Using a Bayesian hierarchical framework, the Generalized Joint Attribute Model (GJAM) fits individual species at the community scale, i.e., all species jointly, and admits biodiversity data that are…
In order to highlight key aspects, we show the logical progression from a simple linear model to a GJAM.
\(y_{i} \sim N(\beta 'x_{i},\sigma^{2})\)
\(\begin{matrix} y_{i} = \left\{\begin{matrix}w_{i} \quad & if \enspace w_{i} > 0\\ 0 \quad & if \enspace w_{i}\leq 0\end{matrix}\right.\\ \ \\w_{i} \sim N(\beta 'x_{i},\sigma^{2})\end{matrix}\)
\(\begin{matrix} y_{is} = \left\{\begin{matrix}w_{is} \quad & if \enspace w_{is} > 0\\ 0 \quad & if \enspace w_{is}\leq 0\end{matrix}\right. \\ \ \\w_{i} \sim MVN(\beta 'x_{i},\Sigma) \end{matrix}\)
\(\begin{matrix}y_{is} = \left\{\begin{matrix}w_{is} \quad & if \enspace continuous \\ z_{is},w_{is} \in (p_{z_{is}},w_{z_{is} +1}] \quad & if \enspace discrete \end{matrix}\right. \\ \ \\w_{i} \sim MVN({\color{Green} \beta'} x_{i},{\color{Blue} \Sigma}) \times \prod_{s=1}^{S} I_{is} \end{matrix}\)
there is a \(\beta\) coeficient for each species and environmental covariate.
the covariance \(\Sigma\) represents the covariance between species beyond what has already been explained by the environmental covariates. It can include interactions between species, unacounted for environmental gradients, and other unexplained sources of error.
Clark, J.S., D. Nemergut, B. Seyednasrollah, P. Turner, and S. Zhang. 2017. Generalized joint attribute modeling for biodiversity analysis: Median-zero, multivariate, multifarious data, Ecological Monographs, 87, 34-56.