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Abstract. Mast-fruiting trees represent a pulsed resource that both supports and destabi-
lizes consumer populations. Whereas a reliable resource is abundant on average and with lim-
ited variation in time and space, masting is volatile and localized, and that variability ramifies
throughout food-webs. Theory is developed to evaluate how the space—time structure of mast-
ing interacts with consumers who exploit alternative hosts, forage widely in space, and store
reserves in time. We derive the space—time—species covariance in resource supply and combine
it with the space-time—diet breadth of consumers, or ambit. Direct connection to data is made
possible with Mast Inference and Forecasting (MASTIF), a state-space autoregressive model
that fits seed-trap and canopy observations and predicts resource availability within the canopy
and on the forest floor with full uncertainty. A resource score can be assigned to each con-
sumer—habitat combination that integrates the benefits of a high mean supply weighed against
the variance cost. As the consumer ambit increases, the volatility of an unreliable resource
shifts from a variance cost to a mean benefit. Consumers foraging in the canopy (arboreal
arthropods and rodents, song birds) experience space-time covariance between host trees. Con-
sumers on the forest floor (seed and damping-off fungi, arthropods, rodents, ground-nesting
birds, mammals) experience instead a redistribution of that covariance by dispersal. For con-
sumers lacking mobility, demographic storage in the form of episodic birth cohorts following
mast years is important for population persistence. Consumers additionally compensate
volatility with diet breadth. Depending on the dominant masting strategies of host tree species
in the diet, habitats differentially limit consumers depending on the misalignment between con-
sumer ambit and spatiotemporal covariance of hosts. The impact of adding or subtracting a
diet item can be gauged with the standard error (SE) rule or the benefit of an added diet item
balanced against the variance cost, both of which depend on the existing diet, the abundance
of the new host, and the consumer’s foraging ambit. Results rank habitats by their capacities
to support wildlife and other consumers from a resource perspective. Results are connected
directly to data, with full uncertainty, by MASTIF.

Key words:  diet breadth; dispersal; fecundity; foraging; portfolio effect; resource score; seed predation;
seed-shadow models; spatiotemporal covariance; standard error rule.

INTRODUCTION

Masting trees and shrubs supply a pulsed resource
that constitutes the base of forest food chains, both sup-
ports and destabilizes consumer populations, and medi-
ates the structure of communities in ways that are poorly
understood (Jones et al. 1998, McShea 2000, Ostfeld
and Keesing 2000, Clotfelter et al. 2007, McMeans et al.
2016, Rosin and Poulsen 2016). Anticipating how food-
webs respond to a changing climate and habitat requires
theory that connects data on the space-time delivery of
this foundational resource with the capacities of
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consumers to abide variation. Seed-shadow models
(SSMs) are widely used to quantify masting, with data
that passively monitor fecundity and dispersal simulta-
neously for all tree and shrub species that can be recov-
ered and identified in seed traps (Clark et al. 1998, 2004,
Uriarte et al. 2005, Jones and Muller-Landau 2008,
Detto et al. 2018). Despite the diverse applications, cur-
rent models omit key features of most data sets, and they
do not estimate the spatiotemporal dependence, which is
often quasi-periodic and synchronous across host indi-
viduals (Crone and Rapp 2014, Bogdziewicz et al. 2016,
Zwolak et al. 2016, Wang et al. 2017). This variability
ramifies throughout food-webs, starting with seed preda-
tors and frugivores that forage at scales from a few
meters to landscapes and ranging in diet from specialist
to generalist (Fig. 1 top). To complicate inference, the
seeds of many species are identified only to genus level
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Fic. 1. Example seed predators on Pinus spp. (above), a 1-m tall pile of cone remnants processed by ground squirrels following
the 2017 mast at Niwot Ridge (center), and five seed types from traps (Pinus in this study) often identified only to genus (below).
From left to right above, the Mountain Chickadee (Poecile gambeli) forages primarily in the canopy, the Eastern Turkey (Meleagris
gallopavo silvestris) and the yellow-pine chipmunk (7amias amoenus) primarily on the ground, and the American red squirrel
(Tamiasciurus hudsonicus) commonly in both locations. Photos J. S. Clark.

(Fig. 1 bottom). The mast-consumer connection is a
missing link in global change science; all serious efforts
to anticipate future biodiversity include diverse climate
and habitat variables, but omit the most basic

requirement of all food. Similarly, food-web analyses
omit the joint relationships between consumers and mul-
tiple host plants, instead building from pairwise relation-
ships that are estimated or simulated independently of
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one another (May 2001, Boit et al. 2012, Thompson
et al. 2012, Jonsson et al. 2018). Important next steps
include theory to connect variation in masting with con-
sumers, including full inference and prediction. In this
paper, we derive the space—time and host-time covari-
ance structure faced by consumers that vary in diet and
foraging strategies. By extending SSMs, we provide a
framework that can synthesize the growing network data
on mast production with consumers that see this varia-
tion each in its own way.

The consequences of masting depend on an interac-
tion between the space-time structure of resource supply
and the capacities of consumers to exploit alternative
hosts, to forage widely in space, and to store reserves in
time (Janzen 1970). A reliable mast resource is abundant
on average, with limited variation in time and space. A
host is defined here as a tree or shrub species that con-
tributes fruit or seed (mast) to the diet of a consumer.
Consumers include not only invertebrates and verte-
brates, but also seed-attacking fungi and damping-off
pathogens. The consumer ambit consists of three dimen-
sions, space (number of host individuals or forest-floor
area typically visited by an individual consumer), time
(storage by several mechanisms), and diet breadth (host
species that differ in quantity and quality of mast they
offer a given consumer). Spatial variation exists within
habitats and across regions (August 1983, McShea 2000,
Stein et al. 2014), and it differs for foragers in the
canopy vs. on the forest floor (Carbone et al. 2005, Shel-
don and Nadkarni 2013). In the canopy, host trees are
accessed by song birds and arboreal-foraging arthopods
and mammals (Curran and Leighton 2000, McShea
2000, Koenig and Knops 2001, Perea et al. 2011, Mill-
eron et al. 2013, Bell and Clark 2016; Fig. 1). Reliability
depends on a host-time covariance between mast-produ-
cing trees, over years. Conversely, many mammals and
birds (including ground-nesters) respond to space—time
covariance on the forest floor (Moore et al. 2007, Zwo-
lak et al. 2016), depending on host locations with super-
imposed fruit and seed dispersal (Fig. 2d). Arthropod
seed consumers exhibit a range of foraging tactics (Jan-
zen 1970, Bonal and Munoz 2008, Espelta et al. 2009,
Bell and Clark 2016). Many song birds and some
rodents forage both in the canopy and on the forest floor
Fig. 1. A consumer experiences this host-space—time
variation depending on these ambit dimensions of spa-
tial foraging, storage, and diet breadth.

The three-dimensional ambit is not captured by cur-
rent metrics used to quantify masting. Most common is
the coefficient of variation for mast abundance y,
CV = E(y)/+/Var(y), which has an implicit scale deter-
mined by data collection. CVs in the literature are some-
times taken over spatial locations (e.g., seed traps), other
times over trees, other times over years (Herrera et al.
1998, Buonaccorsi et al. 2003). For example, if a CV is
calculated on the basis of seed traps, it has the implicit
scale of seed-trap area (e.g., trap area in m?). If it is
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calculated on a tree-to-tree basis, it has an implicit scale
of an individual tree. The variance in yield obtained by
consumers that forage over 10 m? on the forest floor or
10 host trees in the canopy is not 10 x Var(y), because
resources are spatially clumped, and host production is
correlated (Fig. 2b). Likewise, a CV evaluated over time
(Buonaccorsi et al. 2003) applies to a year, without
information on quasi-periodic mast years that can be
spaced up to a decade apart (Fig. 2a) and differ between
host species in mean and variance, in synchronicity
between individuals, and in dispersal characteristics
(Clark et al. 2010).

The three dimensions of a consumer’s ambit are not
only scale-dependent, but also interdependent with one
another (Janzen 1970, Grotan et al. 2009, Pelisson et al.
2013, Lichti et al. 2014, Sainmont et al. 2014, Rodel
et al. 2016). Limited movement can be offset by storage
in time, such as the extended dormancy of damping-off
pathogens (Dworkin and Shah 2010), hoarding by
rodents and birds (Abbott and Quink 1970, Moore et al.
2007), elevated body condition that supports future
reproduction in large mammals (Fernandez-Llario et al.
1999), and vigorous post-mast cohorts that insure at
least some survival through subsequent lean years (Bie-
ber and Ruf 2005, Boutin et al. 2006). Diet generalists
abide spatiotemporal variation through diet switching,
sometimes termed a portfolio effect (Tilman et al. 1998,
Loreau and de Mazancourt 2008, Schindler et al. 2010),
while specialization exposes consumers to the full
heterogeneity offered by a specific host (Devictor et al.
2010, Clavel et al. 2011) (Fig. 2a, b). Most importantly,
none of the data-collection scales implicit in the CV (i.e.,
a tree, a seed trap, a year) are necessarily relevant for
consumers that move, store energy, and forage on
multiple host species.

The cost borne by consumers that depend on unreli-
able resources is missing from models that are used to
predict both the distribution and abundance of species
and the structure and dynamics of food-webs. Species
distribution models (SDMs) (Calabrese et al. 2014) rely
on relationships between the presence/absence of species
and climate or habitat variables, generally lacking infor-
mation on availability of food. Food-web models (May
2001, Boit et al. 2012, Thompson et al. 2012, Jonsson
et al. 2018) are constructed from pairwise interaction
coefficients that are taken in isolation of one another.
These coefficients come either from literature on “who
eats whom” or from allometric assumptions (e.g., “big
eats small”). This information is sometimes combined
with frequency of co-occurrence in observations (Bohan
et al. 2011) or from simulations that draw coefficients at
random. The independent, pairwise coefficients omit the
indirect relationships that cause consumption rate of
any one resource (functional response) to change with
changing availability of others. Food-web analyses of
linkage structure and food-web simulations (including
stability at equilibrium) do not yet address the
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FiG. 2. Space-time scales for seeds and consumers. (az) Masting by three Quercus species in the southern Appalachians is erratic.

Shading spans 80% of the predictive variation at the 1-m

scale. Consumers experience variation in time depending on storage, such

as hoarding from season to season or in large post-mast reproduction. (b) The generalist Sciurus (Fig. 1) averages variation over
multiple hosts (combined Quercus, Carya, Nyssa, Cornus, Pinus). Horizontal lines indicate a time interval for averaging over year-
to-year variation by different mechanisms. (c,d) Spatial variation is likewise experienced by consumers depending on foraging
ambit, here comparing supply for on host (¢) and multiple hosts (d), shown for Pinus in 2013 at DBW in the SE Piedmont. Superim-
posed ambits in panels ¢ and d provide scale for <10 m? (e.g., flightless insects), 100 m? (e.g., larder hoarding rodents), up to 1 ha
(such as breeding-season territories for song birds) and large, mobile vertebrates. (e) Resource score as a function of ambit. Straight
lines indicate ambit domains where resource scores can increase with increasing (A) or decreasing (B) foraging area.

long-standing concerns that pairwise coefficients
extracted from one time and place do not translate to
another (Paine 1988, Shaner and Macko 2011, Bond
and Lavers 2014). Beyond SDMs and food-web models,
the large literatures on foraging theory and interpreta-
tion of tracking data (Owen-Smith et al. 2010, Avgar
et al. 2013, Benhamou 2014) have not benefitted from
estimates of spatiotemporal mast supply that might be
offered by SSMs. Exploiting that information requires
theory that connects the variability in any one host on
the variability and the consumer’s access to others. This
is the connection between host-space-time scales and
the consumer ambit.

A solution to the theoretical challenges is of little use
without a model that offers estimates, which first
requires a solution to problems with current SSMs
(Fig. 2c). SSMs provide insights on dispersal and
recruitment limitation (Ribbens et al. 1994, Clark et al.
1998, 1999, Nathan and Muller-Landau 2000, Fricke

and Wright 2017), gene flow and hybridization (Garant
et al. 2007, Jones and Muller-Landau 2008, Moran and
Clark 2011, Moran et al. 2012), migration potential
(Clark et al. 2001), environmental controls on reproduc-
tive effort and sex ratio (Clark et al. 2004, 2011, Uriarte
et al. 2005, 2012, Schurr et al. 2008, Martinez and Gon-
zalez-Taboada 2009, Canham et al. 2014, Detto et al.
2018), and allocation (LaDeau and Clark 2006, Ber-
danier and Clark 2016). SSMs include a likelihood for
seed-count data, such as a Poisson distribution with
intensity expressed as expected seeds per trap

E(ys) = Ak = 4 st‘ifi
i=1

where y; is the number of seeds in trap s, A4 is sample
effort [seed trap area (m>)], A, is the expected seed den-
sity (seeds per trap), S,; is the density of seed produced
by tree i that is dispersed to location s (seeds/m?), and f;
is seed production by tree i (Table 3). The S x n kernel



Xxxxx 2019

matrix S has rows that can include attributes of seed
traps. It has columns that include attributes of trees. For
a length-S vector of seed traps, a length-n vector of
fecundities, and a S x n kernel matrix S, there is a
length-S vector of seed density

A = Sf. (1)

Because both fecundity f and dispersal capacity S are
unknown, the efficacy of these models should be sensi-
tive to the amount of data and its space-time structure.

SSMs are difficult to evaluate, because estimates are
needed for both fecundity and dispersal, and both
degenerate when trees are too rare or too abundant. For
known S, we might take mean seed counts as an estimate
of A (Eq.1) and solve directly for fecundity,
f = (SS')"'S"A (Clark et al. 2010). However, even with
known S, there is a unique solution (i.e., SS' is full rank)
only if there are more seed traps than trees (S > n). Even
with few trees, the vector f would often include negative
values, which is, of course, impossible. A model for f; as
simple as a prior distribution that excludes negative val-
ues fixes the negative-fecundity problem, but there might
still be insufficient information in the S seed observa-
tions. The early SSMs did not confront this problem,
because they projected the n sources down to a few
parameters, replacing individual fecundity in the vector
f with a function that is shared by all trees, e.g.,

fi=ax sizef.’ ?2)

(first line of Table 1). While such models can converge
rapidly, they cannot describe population heterogeneity.
Many trees might be needed to estimate parameters
(a,b), but high density of trees degrades the estimate of
dispersal S, due to the large overlap in seed shadows.
Poorly estimated dispersal, in turn, degrades the infor-
mation on fecundity f. The question then becomes, can
SSMs estimate dispersal, the effects of size (a,b), and
the fecundities, f;,i = 1,---,n?

Extensions to Eq. 2 have addressed some of the chal-
lenges (Table 1), but they do not offer the synthesis
needed to explain and predict spatiotemporal structure.
Initial efforts to capture heterogeneity at the data stage,
with over-dispersed data models (e.g., negative binomial;
Clark et al. 1998, Muller-Landau et al. 2008), appear
less effective than allowing for heterogeneity in the mast-
ing process, between trees and over time (Clark et al.
2004, 2013, Martinez and Gonzalez-Taboada 2009,
Uriarte et al. 2012).

Subsequent joint modeling of maturation and fecun-
dity combined with in- and out-of-sample prediction
showed that aggregate models like Eq. 2 miss the perva-
sive heterogeneity. Few individuals are reproductively
mature. Fecundity ranges over orders of magnitude, only
weakly related to tree size, and often concentrated within
few individuals (Clark et al. 2004, 2010, Nanos et al.
2010, Moran and Clark 2011, Milleron et al. 2013,
Minor and Kobe 2017). Environmental predictors
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TaBLE 1. Attributes of some some seed-shadow models
(SSMss) with examples.

Individuals Maturation Time

Eq. 2 - -

Examples

Clark et al. (1998, 1999);
Greene et al. (2004);
Uriarte et al. (2005);
Jones et al. (2005); Jones
and Muller-Landau
(2008); Charco et al.
(2017)

Martinez and
Gonzalez-Taboada
(2009); Milleron et al.
(2013); Canham et al.
(2014)

Muller-Landau et al.
(2008)

LaDeau and Clark (2001)

Clark et al. (2004)

FE (A) - IND

FE (A) - RE

Z1P

HM AR(1)
©
FE (B) LaDeau and Clark (2006);

Clark et al. (2010, 2011,

2013, 2014)

RE (A, D)

RE(A,D) HM

Notes: IND, independent year effects; FE, RE fixed and ran-
dom effects; A, B, C, and D are terms in Table 3; HM, hidden
Markov submodel; ZIP, zero-inflated Poisson; AR(1), auto
regressive model 1.

together with tree-level random effects allow for the
large differences between individuals. Year effects
account for annual variation that is shared across indi-
viduals (Clark et al. 2010, 2013). Autoregressive (AR(p))
models allow for lag effects up to p years. Thus far, only
the AR(1) model has been implemented (Clark et al.
2004), whereas masting commonly involves multi-year
lags (Koenig and Knops 2001). Joint models for growth,
survival, and fecundity provide estimates of allocation
responses to the environment (Clark et al. 2010, 2014,
Berdanier and Clark 2016), but they cannot be used
where only seed data are available or of interest.

Despite these challenges with SSMs, they can be
preferable to direct seed tracking methods, such as stable
isotope labels (Carlo et al. 2009, Cortes and Uriarte
2013) or genotyping seeds or seedlings (Godoy and Jor-
dano 2001, Grivet et al. 2005, Jones et al. 2005, Burczyk
et al. 2006, Pairon et al. 2006, Robledo-Arnuncio and
Garcia 2007, Jones and Muller-Landau 2008, Moran
and Clark 2011, Schupp and Jordano 2011, Bontemps
et al. 2013). Due to labor and expense, typically few
seeds or seedlings can be labeled or genotyped, most
often a single species. Labels provide information on dis-
persal, but not fecundity (Moran and Clark 2011, Mill-
eron et al. 2013). Because seed traps sample passively,
SSMs provide an efficient option to gather fecundity
and dispersal estimates from all species that can be iden-
tified in seed traps simultaneously, naturally integrating
space (trap area) and time (trap deployment period).
Because seed traps record seed rain following any con-
sumption losses that occur in the canopy (Bell and Clark
2016) they yield conservative estimates of fecundity.
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In summary, at least three advances are needed. First is
the missing theory to align space-time heterogeneity in
mast with the ambits of consumers. Second is a modeling
framework that delivers estimates needed to apply theory
to data. Finally, computation that is accessible to a com-
munity of users is needed to promote synthesis. Ideally,
that framework would include simulation, to learn about
the conditions where all elements can be identified.

The goals of this paper are ambitious, yet focused. We
leave synthesis of network data to a subsequent, more
sweeping comparison that combines food with traditional
climate and habitat variables (C. Nunez and J. S. Clark,
unpublished manuscript). Here we do not directly extend
results to SDMs or food-web models, but rather provide
the framework that could be exploited by a range of
applications. Results from this study complement existing
foraging theory with formal inference on mast structure
that links to consumer ambit. We fill a gap in species-dis-
tribution models (SDMs), which has emphasized climate,
land cover, and soils, but omitted food. Habitat valuation
based on resource reliability can improve the potential to
predict food-web structure with covariance in supply
across the diet. The next section summarizes theory
needed to link mast with consumers and the model
framework used to estimate it. We follow with a modeling
approach, tested with simulation and applied to a large
network, where we estimate parameters from the theoreti-
cal analysis. Finally, we show how the components of
mast structure combine to “score” the environment for
consumers that see this structure each in its own way.

MoDEL DEVELOPMENT

The two elements of this analysis yield estimates of
habitat value for consumers that differ in foraging ambit.
First we develop the connection between mast observa-
tions and the underlying dynamic processes of tree mat-
uration, fecundity, and seed dispersal. Second, we
translate these individual tree-scale estimates to the
space—time supply to consumers that differ in ambit.

Mast data to dynamic process

Following from the process and data models in Clark
et al. (2013), consider a forest habitat where trees mature
and subsequently produce seed (Fig. 3). The event that
tree i can produce seed in year ¢ is the maturation state,
p;, € {0,1}, a hidden Markov process (Table 2). Coeffi-
cients B’ describe covariate effects on maturation proba-
bility. Where available, observations of maturation state
zi; € {0,1} contribute to estimated p; .

Mature individuals (p;, = 1) have conditional fecundity
V;, > 1 that depends on fixed and random effects, year
effects, and/or autoregressive terms (Table 3, submodel
A). Coefficients in $* can include tree size, environment,
and interactions. Random effects (REs) B}’ accommodate
the heterogeneity of responses across individual trees
(Table 3, submodel D). Annual variation can be described
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Fecundity Dispersal

Observed

Variance Coefficients Predictors

Conditional Seed ID
fecundity
Status
Maturation
Observed

Coefficients Predictors

FiG. 3. Probabilistic graphical model, showing estimates

(circles) and observed variables (squares), with dynamics
(t — 1,1). Variables are defined in Table 3.

TaBLE 2. Terms.

Term Definition Reference
Ambit Consumer movement/ Introduction
storage in space (m* on
ground or host trees in
canopy), time (yr), diet
breadth (no. host spp.)
Demographic Large consumer cohort Habitat
storage follows masting event reliability

Error matrix, M Uncertain seed Appendix Sl1:

identification section S2.4
Maturation state {0, 1}, true p,,, observed  Eqgs. S2.5
Zit and S8.15
Fecundity Conditional \y;,, true f;, Eq. 2
Quality, Resource density at Habitat
ground, g, location s in yr  (g/m?); reliability
space X yr covariance
Gsi, total Gy (g)
Quality, host, ¢;,  Resource from host tree Eq. 8
iinyr ¢ (g/tree);
host x yr covariance
Q,;., total 0, (2)
Quality, seed, r;, Resource value of seed/ Eq. 8
fruit of host species /1
Kernel, S Redistribution from Eq. 1, Eq. S2.1
trees to ground (m %)
Resource score Quality/reliability of Habitat
mast reliability

Note: Table 3 contains variable definitions. In addition, S is
the area over which a consumer forages, n is the number of trees
visited by the typical consumer, and L is the number of lag years
that a resource is stored.

by year effects y,, quantifying shared variation across indi-
viduals (Table 3, submodel B), or as quasi-periodic varia-
tion through an autoregressive AR(p) model, with lag
terms oy, / = 1,---, p (Table 3, submodel C). Year and lag
effects can be random across species and/or regions, recog-
nizing that masting may be coherent within, while not nec-
essarily between groups. Actual fecundity fi, = \; ,p;, >0
is the product of conditional fecundity and maturation
(Fig. 3). There are sometimes direct counts from the
canopy (LaDeau and Clark 2006) or from the ground
(Minor and Kobe 2017). When available, observed
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fecundity enters as a seed, fruit, or cone count ¢}, the
fraction of the fruit-bearing canopy observed c{t, and the
standard error assigned to the canopy fraction ¢},. These
three numbers are held in the vector ¢;, = (¢/,, d 0 Cly)
(Fig. 3), where counts are fruits or seeds, ¢/, is taken in
units of seeds. Methods developed here omit studies that
lack seed trap data (e.g., Koenig and Knops 2001),
because we are concerned with not only seeds in the
canopy, but also their redistribution by dispersal.

TasLe 3. Termsforconditional fecundity, log\y;, ~ N(u;, o?),
and variablelist.

Terms and variables Definitions

MASTING AND CONSUMERS

Terms in p;,

x; p* A, fixed effects

Ve + Vel B, fixed year, random by group

S (0 + ot Wiy C, AR(p) fixed lag, random
group g

w, B D, random individual effect

Variables/parameters (dimension)

Ay, Sample effort (m?)

A, (G x G) Random group covariance for
AR(p)

o, g AR(p) lageffect/ =1, ..., p,
random group g

B, (¢" x ¢") Rangom individual covariance
(x~

B (¢" x 1) Maturation coefficients (v™!)

B (q" x 1), B’ (¢" x 1) Fecundity fixed, random
coefficients (x 1)

¢, (2x1) Seed count on trees, canopy

fraction counted
S Fecundity (seeds)
Seed mass on the ground (g/m?)

g.\'/l,t

N Expected seed density
(no. seeds/m?)

\7¥ Conditional fecundity (no. seeds)

Ve Yeareffectt=1, ..., T

m; (M x 1), M(H x M) Seed-type composition for
species /1

qis Seed mass on the tree (kg/tree)

Pis Maturation status

S (S x n) Redistribution kernel matrix
(m™)

o’ Log fecundity residual variance

7 Year variance

ug or uy, u (G x 1) Random dispersal parameter

(m?)

u, U Fixed dispersal mean (m?) and
variance (m*)

vii(g" x 1) Maturation design (x)

Xi. (¢" x 1), wi, (¢" x 1) F(ecundity fixed, random design
Xx)

Vsm.r Seed count

Ziy Observed maturation status

Notes: Subscripts reference trap s, seed type m, individual i,
species h, year t. g[i] refers to membership of individual i in
group g. There are n trees, S traps, H species, M seed types, and
G random groups used to model year effects, lag effects, or dis-
persal. Variables lacking units at right are dimensionless.
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Seeds accumulate in traps s =1,---,S from nearby
trees, depending on the dispersal kernel S(u), which
includes fitted parameters u = uy,---,uy for each spe-

cies i. The seed count ygy , is the number of seeds of type
m counted in trap s in year 7. Seed counts can be missing
or censored, the latter when traps are inoperative during
part of a collection interval or when seed counts are
recorded in bins (e.g., Bourg et al. 2013).

Seed-identification uncertainty enters through a
H x M error matrix M. When multiple species
h=1,---,H contribute to the same seed type(s) (e.g.,
some seeds identified only to genus), then the
m=1,---, M seed types must be included in the model
with the H species that could have produced them. Ele-
ment My, is the probability that a seed of species / will
be assigned to type m. The likelihood for seed counts
incorporates observation error M, sample effort A (trap
area), and Poisson variation in counts Y.

The full posterior distribution includes parameters
and latent states (maturation and conditional fecundity).
It can also include random effects, year effects, and lag
effects (Table 3). In its most basic form (main effects
only) the model has parameters

0= {p*,p", 0’ ,u,M} (©)

(Table 3). The posterior distribution is

Ty
01X, V, Y, ¢ o [] []Poi(vemi

Asj,rksmj,r) (4)
smyj =1
X H H Bernoulli(p;,[p; 1
ij teTy
+ (1= pj—1) @V, B") (5)
7
X H H binom(cj; [y, CZ;)
ij t=1
(W, = ¢ beta(cy lag, by.) (6)

T;
< [T TINCogy, x; 8+, %)

ij =1

I, <1 (g, > 1P (7)
x [6]
where  Agmj, is an element of §;;, x M matrix

)\4]"[ = Sjyt(u)Fj’t(\l/,'/‘.n Pg,-,,,M)- The nj; X M matrix Fj_,
has elements given by Eq. S2.6. S(u) is the S;, x n;, ker-
nel matrix, and Ay, is the trap area. Years lacking
observed status z;;, make up the set Tj; in Eq. 5. The
binomial parameter \;;, in Eq. 6 is rounded to the near-
est integer value. The uncertainty in observed crop frac-
tion CZ, in Eq. 6 has beta parameters determined from
the standard deviation assigned in the field ¢j; ,. Terms in
+ in Eq. 7 can include random effects, year effects, or
AR(p) terms. The prior distribution is discussed in
Appendix S1: section S2.5. Sampling distributions are
given in Appendix S1: section S8.
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The posterior distribution makes clear how the model
accommodates spatiotemporal dependence in data.
Because maturation Eq. 5 and fecundity Eq. 7 are latent
at the process stage, there is a posterior covariance for
the full set of maturation and fecundity estimates.

Dynamic process to habitat value

The estimates of fecundity of all trees in all years
describe a dynamic process in the canopy. Combined
with spatial distributions of trees and dispersal, fecun-
dity is used to predict the distribution of seed across for
the forest floor. In this section, we translate the dynamic
maturation—fecundity process to the spatiotemporal
covariance experienced by consumers of differing ambit
in the canopy and on the ground and then to a score that
accounts for consumer yield that weighs the cost of
variation.

Habitat reliability.—The cost of search time in a variable
environment is central to foraging theory and a goal of
inference in tracking studies (Owen-Smith et al. 2010,
Avgar et al. 2013, Benhamou 2014). Taken in isolation,
scale dependence in space determines whether or not to
forage widely. In an extreme case of an island where the
cost of movement may outweigh the low probability of
encountering food, adaptations can include loss of flight
(including seabirds, e.g., the Galapagos Cormorant (Pha-
lacrocorax harrisi)). For masting, the movement scale in
the canopy is summarized by the 7 hosts visited by a con-
sumer. The movement scale on the forest floor is area S.

Time dependence determines whether to store (e.g.,
periodic variation) or not (constant availability). A high
mast year can be stored at the individual scale through
dormancy (fungal pathogens), hoarding (Abbott and
Quink 1970, Moore et al. 2007), and by so-called capital
breeding (mammals) (Karasov 1986, Sainmont et al.
2014, Rodel et al. 2016). It can also be stored within pop-
ulations, here termed demographic storage, a pulse of
births that follows masting events (McShea 2000, Sch-
midt and Ostfeld 2003, Boutin et al. 2006, Descamps
et al. 2008, Bergeron et al. 2011, Pelisson et al. 2013,
Ogawa et al. 2017). The mast-year cohort can be suffi-
ciently large to offset mortality losses and low birth rates
in subsequent non-mast years. The time scale can be rep-
resented by lag year /.

Space-time interaction determines the benefit-cost of
movement before next year. Invertebrate seed predators
may have sedentary larvae that feed on one host, but
widely dispersing adults (e.g., nut weevils of the genus Cur-
culio), an important strategy where an individual host is
not reliable from year to year. The advantages of expand-
ing the diet or, conversely, the cost of losing a host species
depend on a host’s covariance with other diet items at the
space—time scale describing the consumer ambit.

We derive a simple resource score to summarize com-
bined effects of mean resource abundance and variance.
For a patchy resource (Fig. 2¢), consumers with a
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narrow foraging ambit are restricted to dense-resource
habitats; concentrated resources make limited ambit
possible within, but not between, these patchy habitats.
Conversely, by averaging, the wide-ambit consumer can
satisfy its requirements where spatial variation is high.

When variation in space is combined with variation in
time (Fig. 2a) the resource score forms a surface
(Fig. 2e). A consumer with restricted spatial ambit
increases its score by foraging more broadly in space and
storage in time along direction A in Fig. 2e). The surface
is increasing in this direction because the increased total
yield outweighs the variance cost at this scale. In the
same habitat, a consumer of broader spatial ambit
increases its score by decreasing its spatial ambit along
direction B, due to the cost posed by scale-dependent
variance in this habitat. When habitats are both patchy
and ephemeral, shifting location from year to year, con-
sumers with limited movement can compensate with a
dispersal stage between years (e.g., a larval seed predator
and flighted adult). Diet generalists depend on masting
behavior of host individuals of multiple species. Diet
breadth increases the height of the surface provided that
alternative hosts are not highly synchronized in space
and time, shown by comparing (Fig. 2a with Fig. 2b
and Fig. 2c with Fig. 2d). This effect draws on the spa-
tiotemporal covariance in resource supply, highlighted
by interaction surface in Fig. 2e).

To translate the spatial and temporal components of
variance in Fig. 2a-d to a scale- and diet-dependent
resource score like Fig. 2d, we begin with host quality,
the product of per-seed or per-fruit reward and seed/fruit
abundance

Giy = Thifis (8)

where 1y is the seed quality of host species & corre-
sponding to tree i. Here we use seed mass as an index
for quality (Table 2), but quality can be defined on
alternative scales, including nutritional value. Dispersal
translates host quality ¢, , (kg/host tree) to resource qual-
ity on the ground g, (g/m? summed over all hosts in the
diet).

The mast benefit is the accumulated resource over the
consumer ambit. Let Q,;, =) _,,;¢i; be the yield to a
canopy consumer that searches n host trees over L years,
with expectation

E(Qu) = nL x Eu(q) ©

where Ej;(q) is the per-host, per-year, expected yield. A
consumer on the forest floor obtains yield Gg; =
> &1, With expectation

E(Gs) = SL x Egy(g). (10)

A consumer with restricted space-time foraging (small
n, S, L) and narrow diet breadth is vulnerable to the
variance in encounter of resource-rich habitats.



Xxxxx 2019

To weigh the benefits of a large mean, Ej(q) or Ey(g),
against the variance cost of an unreliable resource,
Var(Q,) or Var(Gsy), we build from the familiar coeffi-

cient of variation, CV = /Var(Q,.)/E..(Q) (Herrera
et al. 1998, LaMontagne and Boutin 2009, Pesendorfer

et al. 2016), but introduce scale dependence across mul-
tiple host species of variable resource quality (Eq. 8).
The traditional CV is inadequate, because the same CV
could apply to masting intervals of 2-10 yr, having very
different impacts on consumers depending on their
space-time—diet ambit (Fig. 2e). Our resource score
inverts the CV (a score increases with the mean and
declines with the variance), makes it scale-dependent,

and expresses it on a proportionate (log) scale,
R, = —logCV, (tree-time) for canopy foragers, and
Rs;, = —log CVgy (space-time) for ground foragers.

As a reference for the role of scale, the scale-indepen-
dent resource score for a spatiotemporal Poisson process
includes expected yields in Eqgs. 9 and 10 and (scale-
independent) expected variances

E(Var(Q,z)) =nT x Vary(q) an

E(Var(Gs.)) = SL x Vary(g). (12)

The baseline resource score in the canopy increases
with scale at a rate of log(nL)/2

E(R,r) = —1logCV,, =log E;y(q)
log(nL) — log Var;(q)
+ 2

(13)

By substituting n for the subscript nL, the resource
score applies to n host trees in a random year (lag
L =0). A subscript L applies to a random host over L
years (n = 1). Likewise, for the forest floor there is a
resource score for L years in one site, for S sites in a ran-
dom year, and for SL site—years. The baseline Eq. 13
provides an index to compare habitats that differ in scale
dependence.

Tree—time and space—time covariance.— Masting is expe-
rienced differently by consumers in the canopy and on
the ground, described by covariance structures that
make the resource score in Eq. 13 scale-dependent. For
the canopy, there is no evidence for a distance-related
covariance between trees within stands (Clark et al.
2010), consistent with widely observed regional coher-
ence (Liebhold et al. 2004, Fernandez-Martinez et al.
2017). For this reason, within-stand canopy covariance
is between trees, rather than over distance. On the forest
floor, spatial covariance results from a combination of
host-tree dispersion superimposed with seed dispersal
from those trees. We do not introduce a geospatial model
(e.g., Gneiting 2002, Banerjee et al. 2015), because spa-
tial covariance is already induced by the dispersal kernel
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S. For covariance over time, we use the covariance in the
estimated fecundity from the SSM.

The covariance analysis begins with a fecundity matrix
F(,..r) consisting of fecundity of tree i in year ¢ f;, with
expectation and covariance

E(fur) =V

(14)

COV(F(nxT)) = C(nTan)
where f(,7) = vec(F,x7)) and 7 are length-nT vec-
tors (to simplify notation, individuals are mature), and
Curxnr) 1s the n'T x nT covariance matrix that incorpo-
rates both the relationships between individual trees and
their variation over time. The vec(-) operator stacks the
columns of a matrix to obtain a vector. An element Cj iy
holds the covariance between host individual  in year ¢
and host individual 7/ in year . We cannot estimate the
tree-time matrix C,rx,7), because each (i, 7,1, 7') combi-
nation happens once. The tree-lag covariance holds ele-
ments C; ;, where time 7 and ¢ are replaced by time lag
[. This matrix can be displayed as a lower triangular
matrix for each lag (Fig. 4). At lag / = 0 (Fig. 4, left) the
positive variances (warm colors) occupy the diagonal.
All other elements are covariances and can be positive
or negative. A positive covariance between two individu-
als (i # ') at lag (/ > 0) (Fig. 4, right) indicates individu-
als that are offset from one another in time. This is the
space-time interaction important for consumers that
occupy a single host in a given year that will not offer
that resource the next. Hereafter, matrix C,,; or sim-
ply C,;. refers to the tree-lag covariance that summarizes
the entire covariance structure over host trees and lagged
years.

We note two special cases, (1) a n x n (tree-to-tree)
covariance C, holding the covariances experienced by a
consumer that moves between n host trees in a random
year, and (2) an L x L (year-to-year) covariance Cj,
holding the covariances experienced by a consumer that
tracks a random host over L years.

lag: =

Fic. 4. Lower triangle of the tree-lag covariance matrix has
elements C; 7, shown for six trees at lags 0 and 1. At lag/=0
diagonal elements are all positive (they are variances), and most
trees show positive covariances (warm colors), because there is
tendency for synchrony. At lag / = 1, tree i = 2 shows negative
covariance with itself C,, ; (blue), and tree i = 5 shows positive
covariance with tree 77 = 1. The same covariance matrix can be
constructed for locations on the forest floor.
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In contrast to tree-time covariance in the canopy,
ground foragers respond to space-time covariance,
which depends on tree locations, on the individual-time
covariance, and on dispersal. For year ¢ and a vector of
fecundity over n trees f(,), there are expected seed inten-

sities at locations s € {1,---,S},
E(yslfom) = Alf )
= Sisxnfim)

The conditional covariance in intensity is

Cov(E(y|f)) = Cov(A|f) = SC,S'.

The full covariance additionally includes the Poisson
variance

Gs = Cov(y) = Cov(E(yIN) + E(Var(f)) o
= SC,S' + diag(Sf).
Combining these terms confirms that they describe
covariance in simulated data (Fig. 5, right). The first
term in Eq. 15 links the covariances between trees with
seed dispersal (Fig. 5, left). There can be negative
covariances (blue in Fig. 5), depending on covariance
structure in C,, but positive values dominate, imposed
by dispersal. This effect will vary for each habitat,
depending on the distributions of hosts, their fecundities,
and their dispersal distances. The second term in Eq. 15
contributes only (positive) variance (Fig. 5, center), act-
ing like the nugget of geospatial models (Banerjee et al.
2015) (However, a nugget is not needed here to the make
G,, positive definite, as SC,S is positive definite). The
next section extends these results to multiple host
species.
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Variance for a generalist consumer.— Because consumers
exploit multiple resources, the covariance structure must
describe their combined supply, accounting for differ-
ences in nutritional quality. In this section, we evaluate
the covariance in resource quantity to a canopy forager
of n host trees and L lag years Q,; and to a ground for-
ager over space S and L years Gg.
In the canopy, the aggregate resource available to the
consumer of n hosts over L years is

QnL = r:,FlL (16)

where 1, = 1), ..., 7y i the vector of seed quality
associated with each tree (Eq. 8), and 1, is a vector of
ones. Note that r, combines individuals of all host spe-
cies in the diet. There are also aggregate variances for a
random year on n host trees, and for a random host
tree over L years. For example, the aggregate variance
over all host trees in the diet is

Var(Q,) =r,C,r, =1,Q,1, (17
where Q, is the covariance for resource yield between
trees (Eq. 8).

To combine the contributions of mean and variance,
the resource score for the consumer foraging over n trees
replaces terms in Eq. 13 with those that come from the
scale-dependent space-time covariance. Foraging over n
hosts and L years gives the score

log Var(Q,.1)

> (18)

Ryr = IOg erL -

where the variance in the second term comes from
Eq. 17. This variation can be compared to that expected
for scale-independent variation in Eq. 13.
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FiG. 5.

Contributions to space covariance Gg from terms in Eq. 15 plotted against the covariance in simulated data. Covari-

ances (blue) are mostly positive, induced by dispersal. Variances (black) are necessarily positive and include the effects of sampling.

The simulation is described in Appendix S1: section S3.
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We can combine Eq. 13 with Eq. 18 to quantify the
potential advantage to a consumer if it could expand the
diet to include a new host / that brings 7 new host indi-
viduals into the diet and depends on densities of the cur-
rent and new host species, their space-time. The
aggregate resource from Eq. 16 increases by a term

Q(n+f7)L =0+ T%FizlL (19)
where r;, is the quality of the new resource, which can be
concatenated into a length 7 vector r; and Fj is the
i x L matrix of seed produced by new host individuals.
The expected addition to the diet from the second term
in Eq. 191is

E(W,F;1.) = il x Ey(f) = AL x Ey(q) (20)
where E,-;(]~r ) is the expected seed production by the new
host. From Eq. 17, the aggregate variance adds two
terms

Var(Q i) = Var(Qur) + v, Cartir + 25, Capnrtr
(21

where Cj; is the 7L x nL covariance for new host trees,
and Cjy . is the nL x nL covariance between new and
current host trees. Of course, strong negative covariance
with hosts now in the diet (third term in Eq. 21)
decreases aggregate variance, with obvious benefits. Not
so obvious is the fact that, even if independent of the
current diet, the resource score is expected to increase
whenever the contribution to the aggregate mean com-
pensates for potential increases in variance. For indepen-
dent variation, Eq. 21 simplifies to

Var(Qui) = Var(Qu.) + riL x Var(f)
= Var(Q,.) + L x Var(q)

The new host increases the consumer’s resource score if
this inequality is satisfied:

Qur + 1L - Ey(g) > \/Var(Q,) + L - Var(g).

As the number of new hosts becomes large, 7 > > n,
this inequality tends to

Var(y)

E@) >\~

(22)

If the consumer were a statistician, she would recognize
the right-hand side of Eq. 22 to be her standard error
(SE) for expected yield on the left-hand side. This is the
consumer’s uncertainty in the yield from the new host.
It is a consumer- and habitat-specific SE, because it is
referenced to the consumer’s ambit, including current
diet breadth (nL) and number of host individuals it
could exploit for the new resource (n7L). Hereafter, we
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refer to the SE rule as a rule-of-thumb for the advantage
of diet breadth.

We use resource scores to compare the value of habi-
tats that vary with consumer ambit, including total
yield, Gs; or O, (Eq. 16), and score (Eq. 18). The con-
tributions of covariance structure across the diet are
compared using this difference:

AnL = RnL - E(RnL) (23)

from Eqs. 13 and 18 and Ag;.

The same analysis leads to a resource score for ground
foragers, Rg;. Despite positive and negative covariances
between canopy trees, the forest floor covariances in Gg
tend to be positive at the characteristic scales of disper-
sal (Fig. 5). This is not necessarily so at broader spatial
scales, where the dispersion of host trees of different spe-
cies can dominate spatial covariance.

The foregoing analysis also applies to loss of a diet
item. Consequences are most severe for hosts with nar-
row diet breadth (host-specific consumers being the
extreme case) and where the missing host is uncorrelated
(or negatively correlated) with residual hosts. In other
words, the host that is lost had previously bridged the
consumer through times and locations of sparsity in
other hosts. Space-lag covariance structure used for Q
and G in this section is expanded in Appendix S1: sec-
tion S4.1. Data that are introduced in the next section
are fitted with the model and used to generate predictive
distributions of covariance and resource scores.

MasT DATA

To illustrate methods, we use the genus Pinus and its
interacting species as an example. This wide-ranging and
multi-species genus challenges the model with unbal-
anced data, observation error in seed identification,
missing data, censored seed-trap values, and combina-
tions of observed and unobserved fecundity estimates.
Data come from 12 inventory plots initiated between the
years of 1991 and 2011. Methods and site variables are
detailed in a several previous publications (Clark et al.
2004, 2010, 2014, Bourg et al. 2013). Habitats include
southeastern Piedmont mixed pine-hardwoods (DUKE
EE, EW, BW, HW), Appalachian mountains (CWT 118,
MARS F, P, SCBI), and New England mixed hardwoods
(HARV BW, S). Numbers of trees, tree-years, seed and
cone types, seed traps and trap-years are listed in
Table 4. Data are unbalanced over time, combining
plots observed from 4 to 27 yr. Within each plot, trees
can differ in recruitment year, year of death, and year of
maturation, the latter estimated as part of model fitting.
Numbers of trees and seed traps differ between stands.
Multiple species on the same plots meant that species
identity of most seeds was unknown (Fig. 1). Through-
out this multi-decade study, methods emphasized mini-
mizing false-positive seed identifications, thus restricting
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species-specific classifications to unambiguous cases
(Appendix S1: section S2.4).

Plots included both missing and censored values.
Missing observations are those for which a seed trap was
inoperative during a full collection year. Censored obser-
vations were either (1) inoperative over part of a year
and, thus, only a minimum count is known, or (2) seed
counts were recorded as interval classes. We include
SCBI data from the study by Bourg et al. (2013), where
counts are reported in bins (0, 1, 2-5, 6-20, >21). Cen-
soring makes use of the cumulative Poisson likelihood,
as discussed in Appendix Sl1: section S2.2.

Maturation observations are available intermittently,
because cones can be obscured by foliage. Fecundity
observations are available directly from canopy counts
for plots at the Duke Forest FACE site (F1, F5, F5). We
include here only control plots, i.e., those not subjected
to elevated CO, treatment (LaDeau and Clark 2006).
Detailed field and lab methods are available in (Clark
et al. 1998, 2004, 2010, Moran and Clark 2011, Bell and
Clark 2016) and, for SCBI-LTFD, in (Bourg et al.
2013).

Consumer ambits are offered as no more than exam-
ples intended to illustrate methodology. Our study sys-
tem in eastern United States supports a diversity of
ground and canopy foragers that include Pinus (Fig. 1)
in the diet. Arthropod seed predators forage mainly in
the canopy (Cibrian-Tovar 1986), including members of
the Coleptera, Hemiptera, and Lepidoptera. Canopy
vertebrates include Crossbills (Loxia spp.) and other
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finches (Fringillidae), Nuthatches (Sitta spp), Gray Jays
(Perisoreus canadensis), and Red-bellied Woodpeckers
(Melanerpes carolinus). Ground-foraging seed predators
include eastern chipmunks (Tamias striatus), white-
footed mice (Peromyscus leucopus), and red-backed voles
(Clethrionomys gapperi) (Abbott and Quink 1970,
Ogawa et al. 2017). Eastern gray squirrels (Sciurus caro-
linensis) forage in the canopy and on the ground. Each
new empirical study would report the ambit somewhat
differently. Our examples show how methods can be
applied to different consumers in different habitats.

METHODS

Methods consist of data simulation and application.
Data simulation from the model is used to illustrate con-
cepts and explore the effects of trees and traps per plot,
unknown seed types, numbers of plots, and numbers of
years. The application to Pinus data shows how esti-
mates connect to consumer ambit.

Data simulation

Simulation studies were used to confirm that seed trap
data can be used to estimate parameters and that the fit-
ted model can predict the data. Rather than offer an
exhaustive compilation of simulation studies, we supply
the full MASTIF package with simple examples for
application (Appendix S1: section S3). We adopt this
approach because fitting depends on the specific density

TaBLE 4. Data summary by plot for the Piedmont (BW, EE, EW, HW), including three plantation sites (F1, F5, F6), the
Appalachians (118, MF, MP, SCBI), and New England (HBW, HS).

CWT DUKE HARV MARS SCBI
Species 118 BW EwW F1 F5 Fo HW BW S F P LFDP Total
Trees
pinuEchi 0 47 20 0 0 0 1 0 0 0 0 0 68
pinuRigi 32 0 0 0 0 0 0 0 0 0 0 32
pinuStro 3 0 0 0 0 0 0 175 145 81 22 101 527
pinuTaed 0 353 60 105 107 167 192 0 0 0 0 0 984
pinuVirg 0 10 11 0 0 0 1 0 0 0 0 3 25
Tree-years
pinuEchi 0 799 240 0 0 0 18 0 0 0 0 0 1,057
pinuRigi 832 0 0 0 0 0 0 0 0 0 0 0 832
pinuStro 74 0 0 0 0 0 0 875 725 972 264 404 3,314
pinuTaed 0 6,001 720 1,050 1,070 1,670 3,456 0 0 0 0 0 13,967
pinuVirg 0 170 132 0 0 0 18 0 0 0 0 12 332
Traps 20 148 69 12 12 12 66 36 36 35 36 200 682
Trap-years 520 2,516 828 120 120 120 1,188 180 180 420 432 800 7,424
Seeds
pinuRigi 242 0 0 0 0 0 0 0 0 0 0 0 242
pinuStro 0 0 0 0 0 0 0 73 26 5 11 107 222
pinuTaed 0 0 0 523 512 525 0 0 0 0 2 0 1,562
pinuUNKN 229 22,648 1,500 0 0 0 9,670 0 0 520 179 0 34,746
pinuEchi 0 0 0 0 0 0 0 0 0 0 0 0 0
pinuVirg 0 0 0 0 0 0 0 0 0 0 0 23 23




Xxxxx 2019

and distribution of mature trees, dispersal characteristics
of each species, and spatiotemporal sampling design,
including density and dispersion of traps and the classifi-
cation of seeds into types. We emphasize that the simula-
tor can never provide a direct interpretation of model
performance with data, because real data are not gener-
ated by the model. The model necessarily simplifies com-
plex processes that control tree maturation, seed
production, and dispersal. It must be simple in order to
be useful. As with any model, useful estimates are only
expected where there is “signal” in data. We provide a
concrete example using structure similar to the data set
that follows to demonstrate that the model can recover
parameters and predict data. We discuss aspects of data
structure that can lead to poor performance. The value
of the simulator is this first opportunity it affords to
examine general design issues in seed-trap data.

Parameter and latent state estimates through posterior
simulation

Posterior simulation is used to construct the distribu-
tion of parameters and latent states; all estimates are
extracted from this posterior distribution. The structure
and methodology in Model development was imple-
mented both as a generative simulation and as an
(inverse) fitting algorithm in the R package Mast Infer-
ence and Forecasing (MASTIF; available online).* Gibbs
sampling, a Markov chain Monte Carlo (MCMC) tech-
nique, includes Metropolis and Hamiltonian Markov
chain (HMC) steps (Appendix S1: section S8).

Due to a high-dimensional state space (maturation
and fecundity of all trees over all years), posterior simu-
lation suffers well-known scaling limitations of MCMC,
as the parameter set is dwarfed by the volume of param-
eter space (Neal 2011); random-walk algorithms cannot
explore the parameter space in finite time. HMC exploits
the geometry of the typical parameter set to efficiently
target proposals (Betancourt and Girolami 2015).
Because it relies on vector fields (a differentiable sur-
face), HMC does not apply to discrete maturation state.
However, it does apply to conditional fecundity, and is
used for that purpose here (section S8.3). Although
fecundity can be sampled conditional on maturation,
maturation cannot be sampled independent of condi-
tional fecundity. With the exception of maturation,
conditional fecundity, and the dispersal parameters (a
low-dimensional vector), all other parameters are sam-
pled directly (Appendix S1: section S8).

To evaluate the implications of lag structure for mast-
ing cycles, we translated AR(p) terms into eigenvalues
(section S5). Partial autocorrelation functions (PACF)
quantify the contribution of each lag p, while controlling
for shorter lags 0, ..., p — 1. Complex eigenvalues for
the AR(p) model (Appendix S1: section S5) would indi-
cate quasi-periodic variation. A stationary AR(p)

“http://rpubs.com/jimclark/281413
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process has all eigenvalues of less than unit modulus
(real plus complex parts, Appendix S1: section S5). The
tree-lag (canopy) and space-lag (forest-floor) covari-
ances (Appendix S1: section S4.1) were generated with
resource scores for each plot. To summarize the diet-
wide variation experienced by consumers in the canopy
and on the ground, we evaluated entropy over the con-
sumer ambit of trees, sites, and years (Appendix S1: sec-
tion S4.2). Variable selection can be based on DIC
values for fitted models, although the goal of this analy-
sis is to relate resource availability to the simplest model.
We follow with application to field data, demonstrating
inference and spatiotemporal structure.

Application to field data

For this focus on methodology and transparency, we
omit environmental variables known to influence matu-
ration and fecundity (Clark et al. 2004, 2010, 2014).
Model fitting is demonstrated with AR(4) and year
effects for conditional fecundity (Table 3). Prior distri-
butions are provided in Appendix S1: section S2.5.

RESULTS

Simulation studies

Because the basic approach has been detailed with
diagnostics in both the ecological and statistical litera-
ture (Clark et al. 2004, 2010, 2013, Clark 2010) we focus
here on the new innovations associated with seed identi-
fication errors. AR(p) effects are presented in the appli-
cation to Pinus, because they are not available from the
simulator.

An important addition to previous studies is the
demonstration that the model admits the widespread
practice of identifying many seeds only to genus level.
Simulation studies show that the model can recover
parameters and latent states even when most of the seeds
(in this example, 2/3) are identified only to genus level. A
stochastic simulation example is summarized for M = 6
seed types and H = 5 species on a mean of J = § plots,
T = 5 years, n = 25 trees, and S = 50 traps. The compo-
sition vectors for seed identification my, are recovered,
with one-third of seed from each species being assigned
to the species and the remainder to the undifferentiated
class “pinuUNKN” (Appendix S1: Fig. S7.3). Estimates
with wide posterior distributions in Appendix S1:
Fig. S7.3 come from plots where specific tree—seed-type
combinations my,,, are missing or rare. Because there is
no effect on the likelihood for missing species—seed-type
combinations, these unidentified values do not affect
other aspect of the posterior distribution.

Parameter recovery for intercepts is approximate
(Appendix S1: Fig. S7.2) for at least three reasons. First,
tree diameters are measured only above a minimum
diameter. There are no observations near the intercept at
zero, which is extrapolated beyond the data. Second, the
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product form for fecundity (maturation probability X
conditional fecundity) is not well identified near zero
diameter where there is no reproduction; the model can
only approximately identify the difference between an
immature state vs. low conditional fecundity where both
are zero or nearly so. Finally, fecundity coefficients are
on the log scale, meaning that a unit difference near zero
conditional fecundity (at zero diameter) is well below the
noise level in terms of numbers of seeds. A unit differ-
ence from —6 to —5 in Appendix S1: Fig. S7.2b is the
difference between the fractions 0.0025 vs. 0.0067 of a
single seed, which, of course, is never observed. Despite
these challenges typical of real data, coefficients are
accurate for slope parameters, in this case the diameter
effect. These coefficients quantify change in fecundity
for a unit change in the predictor variable.

Prediction from the fitted model is shown for observed
seed counts (Fig. 6a, b) and for unobserved fecundity
(Fig. 6¢) and maturation (Fig. 6d). Seed counts can be
predicted from two stages in the model (Appendix SlI:
section S2). Accurate prediction from the maturation
and fecundity estimates (Fig. 6b) requires that the model

can identify these latent states, but it does not require
that covariates in the model can predict them. From
Appendix S1: section S2, data are predicted from the
latent states (through dispersal and seed identification
error) as {y, p,u, M} — Y*. In the case where there are
more trees than seed traps, and those trees are close to
seed traps, this prediction is vulnerable to overfitting.
Accurate prediction from the maturation and fecun-
dity parameters (Fig. 6a) could only be subject to overfit-
ting if there were a large number of predictors in the
model. Again from Appendix S1: section S2, data are
predicted from environment (fecundity and maturation
coefficients) to the latent states (through dispersal and
seed identification error) as [{B*,p",c*} — {V,p},
{u,;M}] — Y*. In other words, rather than predicting
data from the estimated latent states, data are predicted
from the environmental predictors in the model. In this
case over fitting would be highly unusual, because esti-
mating large numbers of coefficients, say dozens, would
rarely be possible. Due to the indirect relationship
between predictors and seed counts, a large number of
predictors could only be identified for large data sets.



MASTING AND CONSUMERS

Article e01381; page 15

(o=

Standardized diameter coefficient estimate

3.0

2.0

1.0

0.0 -

Standardized diameter coefficient estimate

Xxxxx 2019
a) Maturation
5 —
4
34
[}
]
© 2
£
7]
()
5 1
[0
e
(0]
£
el
(0]
N
© .
= b) Fecundity
o
S 6
8
»
4
2
0 -
FiG. 7.

Estimates of (a) fecundity coefficients p* and (b) maturation coefficients B" (see Table 3) for Pinus. Boxes and whiskers

bound 68% and 95% of the posterior distribution, respectively. Symbolism follows Figure 6.

The model makes good prediction in both cases for this
simulated example with only two parameters each for
maturation and conditional fecundity. The ability to
recover unobserved fecundity, which ranges widely over
six orders of magnitude (Fig. 6c) verifies that the fit
captures each of the key features in the model.

Application to Pinus

Estimates of maturation and fecundity coefficients
show positive effects of tree diameter on both state vari-
ables. Fitted coefficients show species differences in
fecundity responses (Fig. 7, below) and greater similar-
ity in diameter effects on maturation (Fig. 7, above).

Dispersal parameter estimates combined with fecun-
dity and the error matrix M predict broadly overlapping
seed shadows, but with large differences in expected val-
ues, as southern pines (P. echinata, virginiana, taeda)
show much higher values than northern pines
(P. strobus, rigida; Fig. 8). The 95% predictive intervals

apply to the square meter scale. They are scale-depen-
dent and would decrease in width relative to the mean
with increasing spatial scale, and vice versa.

Year effects show co-masting between southern pines
(Fig. 9) that partially mutes the advantages of a diverse
diet: the increase in expected yield with added host spe-
cies does not alleviate the variance cost a consumer pays
when those hosts are synchronized. The concentration
of mast within the same years reduces the capacity for
any one host species to bridge lean times in others. This
effect is larger than it appears due to the log scale in
Fig. 9. By contrast, there is limited support for co-mast-
ing of P rigida and P strobus in the southern
Appalachians.

AR(4) terms show a tendency for positive lag-1 and
lag-3 effects in all but P. taeda (Fig. 10a). In all cases,
the lag-2 term is close to zero, and the lag-4 term is nega-
tive. Eigenvalues from lag terms having large imaginary
parts identify quasi-periodic variation. Real and imagi-
nary parts lie within the unit circle (Fig. 10b), consistent
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with stabilizing variation over the long term. Taken
together, this shows a tendency toward damped, stable
quasi-periodic masting.

The tree-lag covariance C,; and space-lag covariance
Gg;. are shown for canopy foragers over n = 25 host trees
and ground foragers over an area of 25 x 25 m> Each
pixel in Fig. 11 shows a correlation between two host
trees (above) or locations on the forest floor (below) in
the same years (lag 0) or at lagged intervals. Synchronicity
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(warm colors at zero lag) is evident at upper left, and
recurring at lag 3. There is wide individual variation. Cor-
relation on the forest floor (lower panels) is amplified by
dispersal, which induces positive correlation at zero lag
(Fig. 11b). This structure is lost by lag 1, with substantial
patch-to-patch variation in subsequent years.

Resource scores that result from this covariance struc-
ture vary among sites, due to differences in host species
composition, spatial aggregation, and host-tree quality
(seed mass). Scores tend to be negative for canopy for-
agers (lower left of Fig. 12) due to the large variance
among host fecundities. Southeastern sites with the high-
est yield also have high variance cost (DUKE in upper
left of Fig. 12), also apparent from strong year effects
showing synchronicity not only within, but also between
host species (Fig. 9). This is true for two of three planta-
tion sites (DUKE FACE), which have wide individual
differences in fecundity (LaDeau and Clark 2006). The
high variance costs at Coweeta (CWT) come from the
P, rigida stand. The second CWT stand in this figure
supports only a few P. strobus stands, where consumers
would suffer from low total yield. The high score at one
Harvard (HARV) site comes from P. strobus of relatively
low mean fecundity but especially low variance cost. By
contrast with the canopy, ground foragers pay a low
variance cost (upper right of Fig. 12). The wide tree-to-
tree variation in the canopy is smoothed by dispersal at
this scale of 25 x 25 m> Mean benefits on the forest
floor generally follow trends in the canopy. These scores
are scale specific.

To see the scale-dependent and space-time relation-
ships, resource scores are shown as space—time surfaces
(Fig. 13a) for two sites in the canopy and forest floor
with maps (Fig. 13b). The tendency for score to increase
with storage time (yr) is general. All else being equal,
storage benefits consumers at all spatial scales on the for-
est floor. Demographic storage, capital breeding, and
dormancy all effectively reduce variance, thereby increas-
ing scores from left to right. Of course, this trend does
not account for the costs for engaging in these different
types of storage. Rather, it isolates the effect of resource
variation. A space-for-time compensation (increasing sur-
face from lower left to upper right) promotes movement
between years, as shown by transect A in Fig. 2. Even in
this example, the increasing score with spatial scale is not
monotonic on the forest floor, due to the combination of
two scales, that describing clumping of hosts and that
describing the smoothing effect of dispersal. The valleys
in surfaces for Fig. 13b are clearly evident in the maps of
seed densities below. Canopy foragers that average over
spatial displacement at this fine scale (e.g., song birds) do
not experience this heterogeneity.

DiscussioN

Quantifying how an unreliable foundation impacts
food-webs is a first step for understanding diversity and
the biogeography of communities (Janzen 1970, August
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1983, Curran and Leighton 2000, Ostfeld and Keesing
2000, Cortes and Uriarte 2013, McMeans et al. 2016).
Spatial foraging, storage, and diet breadth represent
alternative solutions to the fluctuating resource base. As
foraging capacity and/or storage increase, the variance-
cost of an unreliable resource shifts to a mean-benefit:
the scale-dependent averaging required for survival on
variable resources. Spatiotemporal variance in mast pro-
duction may limit not only the size of consumer popula-
tions in the near term, but also the potential adaptation
of consumers to include new host plants in the diet (Wil-
liams 2007). Foraging theory weighs the costs of variable

resource supply for consumers that profit by minimizing
unproductive search (Railsback and Harvey 2013). The
resource score incorporates benefits and costs for con-
sumers that see this variation each in its own way. A
direct connection from theory to mast data can redefine
habitat quality to include entropy in food supply at the
scales relevant for consumers. The stability properties of
mast cycles can be quantified and compared, in this case,
showing evidence for long-term stability, but pervasive
quasi-periodicity and large differences between habitats
(Fig. 10). The effects of volatile masting of any one host
species depends on all other hosts in the diet. We
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summarize the methodological advance, followed by
potential to improve biogeographic prediction of mast-
ing and consumers of it.

Mast estimates and prediction

MASTIF offers a flexible platform that can facilitate
synthesis across a large and growing literature (Table 1).
Building on earlier analyses the allowance for individual
host-plant heterogeneity (Clark et al. 2004, 2010, Nanos
et al. 2010, Moran and Clark 2011, Uriarte et al. 2012,
Milleron et al. 2013, Minor and Kobe 2017) is critical not
only for useful estimates and predictions of mast supply.
It also governs the space-time variance in the canopy
and, through dispersal, provides the foundation for
ground foragers. The model specification can include
main effects, interactions, year effects, lag effects, and ran-
dom effects (Table 3), while accommodating the uncer-
tainty in seed identification (Appendix S1: Fig. S7.2b).
As with previous models that led to this one (Clark et al.
2004, 2010), prediction is important for evaluating model
fit, including potential overfitting. We find confident

estimates (Fig. 7; Appendix S1: Fig. S7.1). Predictions
are accurate for even a simple model (Appendix S1:
Fig. S7.6) and can only improve when environmental pre-
dictors are included in the model (Clark et al. 2004, 2014,
Uriarte et al. 2005, 2012, LaDeau and Clark 2006).

Simulation in MASTIF can be used to explore poten-
tial design effects in mast studies. Inference and predic-
tion break down when trees are either too abundant or
too rare, an inherent tension between inference on dis-
persal vs. fecundity. When too abundant, overlapping
seed shadows may not be resolved to specific trees.
When reproductive trees are too few, there is an insuffi-
cient range of values to support inference on environ-
mental effects. Because the same seed traps are used to
estimate all species on a plot, model fit will vary for spe-
cies, each of which offers a different distribution of dis-
tances and numbers and sizes and trees.

The approach of (Clark et al. 2004, 2010, Uriarte
et al. 2012), extended here to include uncertain seed
identification, addresses the concerns of (Nanos et al.
2010), while addressing the overfitting problem with
their approach. Finding a better fit when seeds are
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predicted by n trees, rather than, say, two parameters (an
intercept and an allometric coefficient on tree size), they
argue for models that treat each tree as a separate
parameter. Our approach allows that tree size is only
one of a number of local and climate variables that con-
trol fecundity in a given tree year. Indeed, the effect of
tree size can be “insignificant”. The fact that a con-
strained algorithm may predict precisely, does not
change the fact that stands having n > S trees find too
little information for inference on tree effects. Our
approach allows for both a small number of predictors
in the model and for the variance coming from individ-
ual differences, over time. Random variation is informed

by the hierarchical structure and the process model for
maturation and fecundity.

The disadvantages of too many or too few host trees
for confident model fitting on a single plot does not
diminish their contribution to studies having multiple
plots and/or prior information on dispersal distance.
With multiple plots (or informative priors on dispersal),
over- or under-populated plots can bring information on
environmental effects because dispersal information
comes from all plots.

MASTIF’s Bayesian implementation exploits the
accumulating knowledge of maturation, fecundity, and
dispersal (Appendix S1: Fig. S7.1). Prior parameter
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values can integrate previous understanding, particu-
larly for dispersal. The prior distribution combines data
from multiple stands (a network) and years, thus increas-
ing the range of effects that can be estimated. Group-
level random effects stabilize estimates across plots
(Fig. 8) that individually would not provide useful esti-
mates. The flexibility to combine uncertainty in seed
identifications, maturation and fecundity status of trees,
and censored seed-trap observations makes our
approach amenable to many data sets.

Resource score as a cost—benefit index

A single index cannot capture the complexity of habi-
tat-host—consumer interactions. Limitations of the coef-
ficient of variation (CV) include this omission of scale
(Herrera et al. 1998, LaMontagne and Boutin 2009).
Autocorrelation models applied to seed trap data alone,
do not reflect availability in the canopy (Clark et al.
2004, Pesendorfer et al. 2016). Conversely, time series
analyses of canopy counts miss the role of dispersal for
ground foragers. For food-web studies, indices such as
the CV, the simple mast interval, and AR coefficients
suffer the same limitation: two consumers with different
space—time—diet ambits see this variation differently. The
specific resource score proposed here was motivated by
simplicity and its close connection to current practice,
the CV (Herrera et al. 1998, Pesendorfer et al. 2016),
but extended to diet breadth and spatiotemporal depen-
dence.

The generality of this approach comes from the spa-
tiotemporal covariance structure of an arbitrarily diverse
diet that can be estimated directly from data. The scale-
dependent resource score recognizes a shift from vari-
ance-penalty to mean-benefit with expanding consumer
ambit (Fig. 13). The approximations for covariance
between individuals vs. covariance within an individual
over time offered by Buonaccorsi et al. (2003) differs
from our approach. They note the challenges of relating
the two. By constructing the full space-time and space—
tree covariance matrix we can examine the dual effects
of correlated trees (or correlated space) and correlated
years (Fig. 11). The principle steps in this derivation
take us from the quality of seed or fruit combined with
the fecundity of an individual tree in a given year
(Eq. 8), to a tree x tree x lag covariance structure for
hosts (Eq. 14; Appendix S1: section S4), to a spatiotem-
poral covariance on the forest floor (Eq. 15), decom-
posed by host species (Eqs. 19 and 21). It can be
generalized to address a generic landscape characterized
by spatial structure, rather than explicit spatial locations
(Appendix S1: section S1). The resource score represents
only one of many possible ways to summarize space-
time-diet covariance. We expect other summaries to be
equally valuable, depending on specific applications.

The standard error rule (Eq. 22) is a further summary
index for the impact of introduction or loss of a diet item
with direct applications to real habitats. Like the
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resource score, it is not the most important product of
this analysis, but rather a summary of it. Losses from
the diet decrease the mean yield. Where there is weak or
negative covariance with current diet items, the con-
sumer may also lose a bridge resource that is important
at times when alternatives are rare. For example, the
abundant American chestnut (Castanea dentata) in the
Appalachian and northeastern forests had an unknown
masting structure (Diamond et al. 2000). If there were a
strong tendency to co-mast with species in the genus
Quercus then this loss would have less impact that it
would if masting were independent. Knowledge of
important extant mast species can provide guidance on
the impacts of future threats.

A second look at food-webs

One of the most basic features of foraging is interac-
tion: the rate of consumption of a resource depends on a
consumer’s alternatives. Food-web theory based on
analysis of networks emphasizes presence or absence of
specific consumer-prey interactions (Allesina et al. 2009,
D’Alelio et al. 2016) and/or fixed coefficients represent-
ing prey dependence (McDonald-Madden et al. 2016).
Generalized Lotka-Volterra models (Allesina and Tang
2012, Haerter et al. 2016) and resource-ratio models
(Haegeman and Loreau 2015) assume consumption in
proportion to supply of a diet item, traditionally termed
the functional response (Kalinkat et al. 2013). If the
consumption rate of each diet item is to depend on the
availability of others, then the covariance structure
across host species is needed, and it has to include the
differing qualities of those resources. The capacity to
quantify covariance in supply at consumer-specific scales
has direct application to dynamic network analysis,
where trophic connections are interdependent.

Our results show dependence between diet items in
space and time, including co-masting (Fig. 9), which
affects the resource variance experienced by a consumer.
The dependence structure is expected to differ for each
habitat. It is experienced differently by each consumer.
As food-web theory continues to develop, this capacity
to integrate resource dependence could affect the inter-
pretation of food-web stability properties.

Biogeographic implications

For biogeographic understanding, including impacts
of climate change, summaries of mean-variance struc-
ture like our resource score can offer a more direct index
of habitat suitability than is available through the vari-
ables currently used in habitat models and species distri-
bution models (SDMs), which emphasize climate, land
cover, and soils, but omit availability of food. Ecologists
and wildlife managers have long recognized that masting
provides a base of forest food chains, and that space—
time variation can be just as critical as the mean resource
supply (McShea 2000, Ostfeld and Keesing 2000, Boutin
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et al. 2006, Bergeron et al. 2011, Bogdziewicz et al.
2016). We do not offer a full predictive analysis of
resource scores in this paper, because resources alone
cannot predict trophic structure, requiring instead a full
range of climate and habitat variables (C. Nunez and
J. S. Clark, unpublished manuscript). The important con-
tribution to biogeographic understanding includes the
basic theory and computation that can use species-size
structure to quantify resource supply, which can be com-
bined with the traditional climate and habitat variables
in SDMs. The translation of seed production and disper-
sal to spatiotemporal resource availability (Fig. 11) and
the summary of its effect by forest stands (Fig. 12) can
supplement the variables now used for SDM.
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