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S1 General theory

The spatially-explicit analysis for field data can be generalized to an arbitrary landscape,

where explicit tree locations are unspecified. Consider a stand where trees that differ in

fecundity are specified only in terms of their spatial contagion and fecundity class, perhaps

summarized by a distance-size distribution. Fecundity differences may be linked to the

distribution of tree-to-tree distances, as when fecund trees tend to be large and also sparse.

Let r represent distance, and r1, r2, . . . represent the ranked distances from a randomly

selected tree to others in the forest. Spatial contagion is described by density functions

pk(r) · dr for the probability that the kth closest tree occurs within distance interval

(r, r + dr] from a random tree. For simplicity, we assume second-order stationarity. In

other words, the landscape is homogeneous in the sense that spatial aggregation exists

at a fine scale relative to the area of the entire landscape. In this sense, ’homogeneous’

means that density pk(r) does not depend on location, despite the possibility of clumped

tree distributions.

The probability that the kth closest neighbor will be at least distance r is Pk(r) = [rk ≥
r]. The corresponding density for nearest neighbors is p1(r) = −dP1/dr. The density for

nearest trees from a random spatial location is

q1(r) =
1

µ
P1(r)

where µ =
∫∞
0
P1(r)dr is the mean distance between nearest neighbors. This is the

translation of tree-to-tree distances to location-to-tree distances.

The density of distances to the kth neighbor is translated to a renewal intensity for the

expected number of trees at distance r. From a randomly selected location, the renewal

intensity is

m(r) =
∞∑
k=0

qk(r)

where m(r)dr is the expected number of trees in distance interval (r, r+ dr]. For second-

order stationarity (density qk(r) does not depend on location), m(r) is a non-decreasing

function that converges to an asymptote as qk(r) tends to zero with higher values of k.

Thus far, the model takes no account of the fact that fecundity may increase with

tree size, and large and fecund trees tend to be sparse. To account for this effect, the

renewal intensity can be determined for each fecundity class g, or mg. Let E(fg) represent

expected seed production for trees in fecundity class g. The expected intensity for seed

arrivals emanating from trees in class g at all distances is

E(λ) =
∑
g

E(fg)

∫ ∞
0

mg(r)S(r)dr

The landscape (conditional) variance is

V ar(E(y|f)) = V ar(λ|f) =
∑
g

E2(fg)

∫ ∞
0

mg(r)S(r)dr − (E(λ))2

The variance in seeds is
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V ar(y) = V ar(E(y|f)) + E(V ar(y|f))

=
∑
g

E2(fg)

∫ ∞
0

mg(r)S(r)dr − E(λ) (E(λ)− 1)

the last term incorporating the Poisson sampling variance. The resource score in the

section Variance for a generalist consumer is available for this generic landscape based

on these expressions for mean and variance. The basic elements of this analysis are

detailed in the next section.

S2 Generative model and prediction

S2.1 Model elements

Elements summarized in Model development of the main text are described with

additional detail here, with variable definitions from table 3:

• An observation consists of covariates and responses for trees and seed traps, includ-

ing {Xj,t,Wj,t,Vj,t,Yj,t, zj,t, {cij,t}
nj

i=1, {Asj,t}
Sj,t

s=1}. There are i = 1, . . . , nj,t trees on

plot j, . . . , J in years t, . . . , Tj. There are s = 1, . . . , Sj,t seed traps in plot j in year

t. The observation matrices are:

– Predictors that explain maturation occupy the nj,t × qv design matrix Vj,t.

Predictors that explain fecundity occupy the nj,t × qx design matrix Xj,t. If

there are random individual effects, they occupy the random effects design

Wj,t. The different species h are treated as factor levels in Vj,t,Xj,t, and Wj,t

including all interactions with predictors. Thus, species labels are absorbed

into design matrices.

– The length-nj,t maturation vector zj,t holds observed maturation states (often

unknown).

– The length-3 observed fecundity vector cij,t = (cnij,t, c
f
ij,t, c

s
ij,t) holds the seed

count for a tree, the fraction of the crown that was viewed, and the standard

deviation assigned to the crown fraction. If fruiting structures containing mul-

tiple seeds are counted (e.g., cones), then cnij,t is expressed on a seed basis (cones

× seeds per cone) (LaDeau and Clark, 2006). The observation model becomes

betaBinom(cnij,t|ψij,t, aij,t, bij,t) =
∫ 1

0
binom(cnij,t|ψij,t, c

f
ij,t)beta(cfij,t|aij,t, bij,t)dc

f
ij,t.

– The Sj,t ×M response matrix Yj,t holds seed counts. It has one row for each

seed-trap-year and one column for each seed type m.

• Sample effort Asj,t is the trap area (m−2).

• Trap-to-tree distances enter the Sj,t × nj,t redistribution kernel matrix Sj,t. The

distance from seed trap s, j to tree i, j is dsij,t = |ssj,t− sij,t|. The t subscript allows

for ingrowth of new individuals, for mortality loss, and for the addition or loss of
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seed traps over time. S incorporates dispersal parameters ug, g = 1, . . . G, where g

can correspond to species h or to random groups. The redistribution kernel matrix

Sj,t has elements

Ssij,t =
ui[h]

π
(
ui[h] + d2sij,t

)2 (S2.1)

for fitted dispersal parameter ui[h], where subscript i[h] references the parameter

value for the species h to which tree i belongs. This is a two-dimensional Student’s

t distribution (Clark et al., 1999).

S2.2 Censored and missing seed-trap data

Seed trap counts can be censored, either intentionally or not. Counts are intention-

ally censored when they are recorded in bins. Let P represent a partition of the non-

negative integers {0, 1, . . . }. For example, Bourg et al. (2013) use the interval scale

P = {0, 1, 2, 5, 20,∞}. For this study, censored values ycsmj,t ∈ {0, 1, 2, 3, 4} represent

counts that are partitioned as psmj,t =
[
Pycsjm,t

,Pycsjm,t
+ 1, . . . ,Pycsjm,t+1

]
. To get specific,

a recorded value ycsjm,t = 3 indicates counts in the range 6 ≤ ysjm,t ≤ 20. When there are

multiple seed collections k = 1, . . . during a year t, then the censored interval is bounded

by the sums of lower and upper values of intervals for all censored values within that year,

psmj,t =

[∑
k∈t

Pycsjm,k
,
∑
k∈t

Pycsjm,k+1

]
(S2.2)

Counts are censored unintentionally when traps are damaged at some point during

the collection interval, in which case the count is a minimum for the year, with the ’true’

value lying in the censored interval

psmj,t =

[∑
ku∈t

ysjm,k,∞

]
(S2.3)

where uncensored intervals ku are the undamaged collections. In either case, there is a

censored likelihood based on the cumulative Poisson distribution,

CPoi
(
ycsmj,t|Asj,tλsmj,t,psmj,t

)
=

∑
k∈psmj,t

Poi (k|Asj,tλsmj,t) (S2.4)

For censored counts, this likelihood substitutes for eq. (4).

Seed trap counts can be missing, in which case they are imputed from the likelihood

eq. (4).

S2.3 Dynamic interpretation

The process is a multivariate dynamic (state-space) model for conditional fecundity and

maturation, with a joint distribution of these latent states, [ψij,t, ρij,t]. Both state variables

respond to environmental conditions.
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The maturation observation model recognizes uncertainty in the assignment of mat-

uration (fruits are often unobservable in crowded canopies) and the fact that trees are

not observed in many years. Let zij,t be the observed status, which can be mature (fruits

observed, zij,t = 1), uncertain (fruits not observed, canopy obscure), and immature (entire

canopy visible in the fruiting season and fruits not observed, zij,t = 0). Observations on

trees can be missing in many years (Clark et al., 2004). tij,l is the last year in which

individual ij was observed to be immature. tij,m is the first year ij was observed in the

mature state. True maturation status is the indicator ρij,t ∈ {0, 1}, with ρij,t = 1 be-

ing the event that individual ij is mature in year t. Maturation is a one-way process,

[ρij,t+1 = 1|ρij,t = 1] = 1, and [ρij,t = 1|ρij,t+1 = 0] = 0. Status is known to be mature any

time after first observed to be mature and to be immature any time before the last time

it is established to have been immature. Between these times, the status is unknown and

modeled with a probit:

zij,tm = 0→ ρij,t = 0,∀t ≤ tm
zij,tl = 1→ ρij,t = 1,∀t ≥ tl
tl < t < tm → [ρij,t = 1|ρij,t−1 = 0] = Φ

(
v′ijtβ

v
) (S2.5)

where tl is an observation year earlier than t, and tm is an observation year after year t.

Where status observations are unavailable, eq. (4) disappears from the model.

In some data sets there are observations of seeds, fruits, or cones counted from the

ground or canopy. The count cnij,t is obtained for the fraction of the tree’s canopy that is

observed cfij,t. Where counts are unavailable, eq. (6) disappears from the model.

Conditional fecundity is continuous, ψij,t ∈ (0,∞), and depends on maturation status,

ψij,t ∈
{

(1,∞) ρij,t = 1

(0, 1] ρij,t = 0

Note that fecundity here means the capacity to produce at least one seed.

S2.4 Multiple seed types

The observation model includes the uncertain assignment of seeds to species. Seed collec-

tions are classified as those that can be confidently assigned to a species and those that

can only be assigned to genus or even family. There are h = 1, . . . , H species that might

potentially contribute to m = 1, . . . ,M seed types in H×M matrix M. For example, seed

types in a data set might include three Pinus species plus a larger category, Pinus spp.,

which includes all seeds that could not be confidently identified to species. A seed-type

composition matrix for H = 3 species might be organized like this:

M = [m1,m2,m3]
′

=

P. echinata P. taeda P. virginiana P. spp. 0.1 0 0 0.9 h = P. echinata

0 0.2 0 0.8 h = P. taeda

0 0 0.2 0.8 h = P. virginiana
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A row mh of matrix M represents the fraction of seeds produced by species h that are

counted in each seed-type class m. The rows accommodate observation errors, the frac-

tion of species-h seed that is misclassified as seed type m. The vector corresponding to

individual i is designated with the notation mi[h]. The length-M fecundity vector on the

seed-type basis is

Fij,t|ψij,t, ρij,t = mi[h]ρij,tψij,t (S2.6)

where i[h] indicates the species for individual i. Of course, M must be estimated.

By Bayes’ theorem we obtain from the fitted model the inverse M × H probability

matrix H that an unknown seed of type m was produced by species h. The posterior

estimate of total seed produced on the plot is fhj,t =
∑

i∈h ρij,tψij,t. Row m of the inverse

matrix is

hmj,t = [h = 1, . . . , H|mh]j,t =

∫ ∫
mhfhj,t∑
h mhfhj,t

[fhj,t,mh]dfhj,tdmh (S2.7)

where the integral is taken over the posterior distribution of fhj,t and mh.

Table S2.1: Additional prior parameter values.

ũ U∗ ul uh dl dh fmax
pinuEchi 162 30 92 365 15 40 200000

pinuRigi 162 30 92 253 18 40 50000

pinuStro 162 30 92 365 18 40 80000

pinuTaed 162 30 92 365 15 40 200000

pinuVirg 131 30 40 318 8 25 500000

S2.5 Prior parameter values

The prior parameter distribution depends on which components are included in the

model. Maturation and conditional fecundity parameters have the prior distributions

MVN(βv|0, 10 × Iqv), and MVN(βx|0, 10 × Iq), both non-informative–design matrices

are centered and standardized, so the prior is 10 standard deviations. Random effects

have the prior distribution βwi ∼ MVN(0,Bw) and Bw ∼ IW (Iqw , df) with degrees of

freedom df = qw +
√
n+, the second term being rounded to the next integer. Fecundity

has maximum value fmax.

Year effects have the prior distribution
∏

tN(γt|0, 10). For random groups, γg,t ∼
N(γt, τ

2
t ), with group variance τ 2t ∼ IG(2, 1). Autoregressive lag terms have the prior

distribution (α1, . . . , αL) ∼ MVN(0, Ip). If there are G random groups, they have the

prior (αg,1, . . . , αg,L) ∼MVN(0G,Aα), with IW (Aα|Ip, p+ 1).

Seed composition vectors mh in the observation error matrix M have a Dirichlet prior

distribution.

Dispersal parameters have the prior distribution N(uh|ũ, Ũ)I(ul < u < uh) for up-

per and lower bounds (ul, uh). The next stage is ũ ∼ N(u∗, U∗) and Ũ ∼ IG(v1, v2),
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where parameter values (u∗, U∗, v1, v2) are selected based on understanding of the species

dispersal properties.

Additional prior parameter values are given in table S2.1. These include dl, the diam-

eter below which a tree of unknown maturation status is assumed to be immature; dh, the

diameter above which a tree of unknown status is assumed mature; and fmax, maximum

fecundity. U∗ is the prior variance in u between random groups, in this case species.

S2.6 In- and out-of-sample prediction

Seed data are generated by dispersal from mature and fecund trees. Data can be predicted

either from the posterior estimates of these latent states and dispersal or from the posterior

distribution of parameters. Let θ1 = {ψ,ρ,u,M} be the set of latent states, the dispersal

kernel, and error matrix. The predictive distribution of seed data Y∗ is

[Y∗] =

∫
[Y∗|F(ψ,ρ),S(u),M] [θ1|Y,X,V, z, c]dθ1 (S2.8)

From right to left, the interpretation of the integrand is i) the posterior estimates of states,

dispersal, and observation error, and ii) the likelihood (variables are defined in table 3).

This prediction is available for trees and years that are part of the model fitting. It can be

used to predict seed at locations where seed rain was not observed on observed plots and

years. It cannot be used to predict outside sample plots and years, because it requires

estimates for the states of the trees themselves.

Predicting out-of-sample plots and years requires the posterior distribution of param-

eters θ2 = {βx,βv, σ2,u,M}, marginalizing the latent states {ψ,ρ},

[Y∗|X∗,V∗] =

∫
[Y∗|F(ψ,ρ),S∗(u),M]

×
[
ψ|βx, σ2,X∗

]
[ρ|βv,V∗]

× [θ2|Y,X,V, z, c] dθ2dψdρ (S2.9)

From right to left in the integrand we have the posterior distribution of parameters,

maturation status, conditional fecundity, and likelihood. Predictions from eq. (S2.8)

will be more accurate than eq. (S2.9), but, again, eq. (S2.8) is only available for in-

sample prediction, which relies on the capacity to predict maturation and fecundity from

environmental variables as opposed to simply estimating them and on scenarios for X∗

and V∗. The fully generative eq. (S2.9) can be used for fore- and backcasting. Comparing

these predictions identifies when a combination of latent states may predict the data, but

environmental predictors do not predict the states themselves.

S3 Data simulation

The simulator takes numbers of plots, trees, traps, and years as mean values for stochastic

generation of sample size. The simulator follows these steps:

• Generate random species identities, random diameters, and random locations for

trees.
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• Draw coefficients for maturation, conditional fecundity, and dispersal parameters

from a range that can generate patterns like observed data. Both maturation and

conditional fecundity have an intercept and a slope for log diameter.

• Draw maturation status of each tree year from the probit submodel, subject to the

constraint that this is a one-way transition (eq. (5), eq. (S2.5)).

• For mature individuals, draw conditional fecundity matrix F ∼MVN(ψ,Cn) from

eq. (7).

• Assuming that only a fraction of seeds can be assigned to species, construct the mh

vector for each species h and distribute seed production for each individual seed

types that will be recognized in traps.

• Generate a distance matrix from the tree locations to the trap locations and evaluate

a corresponding kernel matrix S(|sS − sN |;u) with dispersal parameter u.

• Evaluate intensities ΛS |fN from eq. (1) and draw counts from ys,t ∼ Poi(λs,t) from

eq. (4). The variance in simulated ys,t is the horizontal axis in fig. 5. The vertical

axis shows the prediction from eq. (15) and its two terms.

Code is provided as part of the package MASTIF (http://rpubs.com/jimclark/457399).

For fig. 5, the specific algorithm is:

S4 Means and covariances

This section summarizes means and covariances observed by a consumer in the canopy

and on the forest floor.

S4.1 Space-lag covariance

The Tree-time and space-time covariance of the main text starts with a space-time covari-

ance matrix and moves immediately to summaries thereof. Here we provide additional

explanation that is relevant to the interpretation of fig. 4 and fig. 11. In this section a

matrix L can represent either host tree covariance C or spatial covariance G.

We can estimate a lag matrix L consisting of vector blocks and elements Lii′,l for lag

l = 1, l = −p, . . . , 0, . . . , p. For the simplest example of two host trees or locations and

one lag (i = 1, i′ = 2, p = 1), this structure is

L =

[
AC1 CC12

CC21 AC2

]
=

[
L11,−1 L11,0 L11,+1 L12,−1 L12,0 L12,+1

L21,−1 L21,0 L21,+1 L22,−1 L22,0 L22,+1

]
(S4.10)

Blocks contain elements Lii′,l. Blocks along the diagonal are the symmetric auto-covariance

(AC) vectors, Lii,−l = Lii,+l. Off-diagonal blocks are cross-covariance vectors (CC), which

are asymmetric, because they depend on which individual leads the other. However, each

element in CCii′ has a counterpart in its mirror block CCi′i, where Lii′,−l = Li′i,+l. In
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other words, CL becomes block symmetric upon reversing the individual labels and the

signs of lag indices in the upper (or lower) block.

Matrix L offers all combinations of tree-tree-lag covariances. Tree-to-tree covariances

for a given lag are held in off-diagonal blocks (CC21 in eq. (S4.10)). Center elements

of the off-diagonal blocks hold the covariances between trees in the same year (L21,0) (

fig. 4, left panel). These elements determine the resource heterogeneity that consumers

abide by moving between trees, depending on their foraging ambits. The masting phe-

nomenon is identified with episodic seed production in lagged year l′, (Lii,l′ > 0, l′ > 1)

and synchronicity (Lii′,0 > 0). The plots in fig. 11 show columns of L for sequential lags

0, 1, . . . .

Tree-to-lag covariances determine the advantages of movement between years, as when

a good year for this tree might be followed by a good year for a different tree next year

(Lii′,±1 > 0). These are shown for lag 1 in the right panel of fig. 4. A consumer might

abide pulsed availability (Lii,±1 < 0) if it has the capacity to switch hosts, and hosts are

not synchronized (Lii′,0 < 0). The same principles apply to ground foragers with limited

spatial ambit. We use the lag matrix to evaluate the advantages of movement between

host trees between years.

S4.2 Entropy

To quantify the heterogeneity experienced by a consumer across trees, space, years, and

hosts we evaluated entropy,

1

2

[
log(2π) +

log |V|
d

]
(S4.11)

where |V| is the determinant of a d × d matrix V that represents one of the covariance

matrices CL (tree-to-tree over years), Cn (year-to-year over trees),GT (spatial over years)

or GS (year-to-year over space). This entropy calculation is reported on a per-dimension

basis (per d) due to the multiplicative effect of integrating volume over d dimensions.

S5 Stability of the AR(p) process

The sequence of fecundities for each tree can be evaluated for its stability properties.

Eigenvalues for time series quantify the tendency for quasi-periodic behavior. For the

AR(p) model, we construct the matrix

E =



ψ1 ψ2 . . . ψp−1 ψp
1 0 . . . 0 0

0 1 . . . 0 0
...

. . . . . . . . .
...

0 0 . . . 0 0

0 0 . . . 1 0


(West and Harrison, 1997). If there are random groups, then there is a matrix Eg for each

group, combining the (global) fixed effect and the random effect for that group. A quasi-

periodic process has complex eigenvalues. A stationary AR(p) process has all eigenvalues
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of less than unit modulus (real plus imaginary parts). Eigenvalues are evaluated for the

fecundity of each mature tree and summarized by plot and species. Eigenvalues for the

AR(4) model are shown in fig. 10.

S6 Dispersal kernel

Seeds arriving in seed traps need not all derive from within the inventory plot (Clark

et al., 1998; Muller-Landau et al., 2008; Clark et al., 2004). This possibility suggests an

intercept proportional to basal area in eq. (1) as a rough accommodation of long-distance

dispersal. We do not include an intercept here, because it can have a large impact on

estimates, without actually being sensitive to trees outside the plot. An intercept can

have a large impact, because it provides an alternative to the dispersal kernel anytime

data are noisy, which is always the case when seed recovery is low. It is insensitive to LDD

otherwise, because the tail of the kernel has no impact on estimates when seed except

in cases where seed is rare (Clark et al., 1999). Distant trees do not affect estimates,

because they do not influence the likelihood, as demonstrated with experiments where

we incrementally increased the sizes of sample plots and showed these diminishing effects

with distance (Clark et al., 1998).

The lack of effect on the likelihood is further demonstrated by integrating the ker-

nel (eq. (S2.1)) arc-wise and with distance. Here is the mean distance associated with

dispersal parameter u,

d̄ =
π
√
u

2
(S6.12)

Seed arriving at a location from beyond distance R is

S(R) =

∫ ∞
R

∮
2π

u

π(u+ r2)2
dr = 2u

∫ ∞
R

r

(u+ r2)2
dr =

u

u+ 2R2
(S6.13)

(Clark et al., 1999), and a distance-specific intensity

l(r) = −d logS

dr
=

4r

u+ 2r2
(S6.14)

These kernel-derived estimates are multiplied by an assumed constant seed production per

area of forest. For perspective, if the average seed of a well-dispersed species moves 10 m

from the parent in a forest of infinite area that is everywhere the same in composition,

then < 1% of all seed derives from beyond 50 m. Again, insensitivity to distant sources

is shown in the analysis of estimates in (Clark et al., 1998). It is consistent with the high

uncertainty in estimated fecundity for trees that are distant from all seed traps.

The likelihood does respond to seeds from outside the plot when there are no nearby

sources. However, in that case there is no information to estimate the kernel. In cases

where fleshy-fruits are dispersed by songbirds, there can still be substantial dispersal from

nearby sources.

In addition to an undesirable effect on estimates, the intercept is costly. If we want

to estimate how much seed might be arriving at a location from outside a plot, we would

not integrate arcwise, but rather would require Reimann sums for areas that differ in
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every direction from every seed trap. They would necessarily be truncated at some dis-

tance beyond which inputs would be assumed negligible. For MCMC, this would require

reevaluation at each iteration, an extremely costly algorithm.

S7 Diagnostics

S7.1 Simulated data

Plots for simulation examples include coefficients, latent states, and predictions. An

MCMC chain for the dispersal parameter in the simulation example described in the

main text is shown in fig. S7.1a. If there is no learning from data, then chains would

return the prior (shown at left in this figure). Instead, chains are concentrated on the

true value.
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Figure S7.1: MCMC chains for the dispersal parameter fitted to data simulated with

u = 253 and a non-informative prior (left) and fitted to Pinus data (right) with prior

distributions shown on the vertical axis. Dashed lines show the post-burnin values used

for estimates. For simulated data (a), the chain converges to the true value (blue line). For

Pinus data species have prior distributions consonant with previous studies, but with low

weight relative to the data–the posterior departs from the prior distribution as expected

with Bayesian updating.

Maturation, fecundity, and seed composition parameters are plotted against true val-

ues in fig. S7.2. Tabular form is presented in table S7.2 and table S7.3. Wide credible

intervals for intercepts in fig. S7.2a, b reflect the small numbers of trees on each plot, the

fact that the intercept at diameter = 0 is outside the data, the product form of these two

functions in the likelihood is not identified at small diameters, and, for fecundity, the log

scale for near-zero values cannot be observed (fractions of a seed). Near zero diameter

the model may not distinguish between the immature state versus low conditional fecun-

dity, because both result in no seeds. However, the slope parameters used to interpret

sensitivity are accurate.
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Figure S7.2: Parameter estimates plotted against values used to simulate data for mat-

uration (a) and conditional fecundity (b) of four species. In both panels, low values are

intercepts and high values are slopes. Also shown is the dashed line of agreement.

Table S7.2: Posterior estimates for maturation coefficients and true values for the simu-

lated example.

estimate SE CI 0.025 CI 0.975 true

pinuEchi -1.760 0.147 -2.05 -1.47 -1.57

pinuRigi -2.320 0.155 -2.61 -2.01 -2.47

pinuStro -2.220 0.157 -2.54 -1.92 -2.50

pinuTaed -2.520 0.185 -2.86 -2.14 -2.67

pinuVirg -1.910 0.151 -2.20 -1.60 -1.94

pinuEchi:diam 0.152 0.007 0.138 0.165 0.120

pinuRigi:diam 0.153 0.006 0.141 0.164 0.144

pinuStro:diam 0.153 0.006 0.140 0.164 0.152

pinuTaed:diam 0.154 0.008 0.137 0.168 0.144

pinuVirg:diam 0.147 0.006 0.134 0.159 0.125

The error matrix M is recovered, with 1/3 of seeds identified to species and 2/3 to the

unknown class (fig. S7.3). The poorest estimates come from plots where species-seed type

combinations are missing or rare. These specific parameters do not affect the likelihood

(because they are not represented in data) and, thus, do not affect the rest of the posterior

distribution.

The simulator was not constructed to generate data containing lag effects. However,

fitting an AR(3) model to data simulated without autoregressive terms returns 95% CIs

that include zero for lag-3 (fig. S7.4), as expected for a time series that lacks lag effects, but

slightly above zero for lag-1 and below for lag-2. This suggests caution in interpreting AR

estimates that are near zero. The full MASTIF package is available in R for experiments

with simulated data, showing posterior estimates, predictive diagnostics, DIC, root mean

square predictive error (RMSPE), and mapped estimates of latent states. The summary

diagnostics provided here can be supplemented with direct experiments by the user.
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Table S7.3: Posterior estimates for fecundity coefficients and true values for the simulated

example.

estimate SE CI 0.025 CI 0.975 true

pinuEchi -5.890 0.280 -6.43 -5.35 -3.81

pinuRigi -6.650 0.331 -7.29 -6.01 -4.02

pinuStro -5.500 0.374 -6.24 -4.77 -4.15

pinuTaed -7.350 0.361 -8.09 -6.64 -3.07

pinuVirg -5.070 0.300 -5.66 -4.49 -3.36

pinuEchi:diam 0.309 0.007 0.296 0.323 0.3021

pinuRigi:diam 0.320 0.007 0.305 0.334 0.297

pinuStro:diam 0.296 0.008 0.280 0.312 0.290

pinuTaed:diam 0.354 0.008 0.338 0.371 0.304

pinuVirg:diam 0.297 0.008 0.282 0.312 0.296
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Figure S7.3: Estimates of the composition vectors mh in simulation, where h = 1, . . . , 5

species that can be classified as M = 6 seed types on plots p1, . . . , p12. For each species,

only 33% were recorded to the correct species, the remainder counted as ”unknown”. The

model fitting correctly recovers 2/3 of seed in the undifferentiated genus class, shown as

horizontal black lines, except in cases where reproductive trees are missing or rare.

14



−0
.5

0.
0

0.
5

lag (yr)

lo
g 

fe
cu

nd
ity

1 2 3

pinuRigi
pinuEchi
pinuVirg
pinuStro
pinuTaed

AR coefficients

Figure S7.4: Estimates of lag terms for simulated data generated without them for five

species with 95% CIs.

pi
nu

R
ig

i

pi
nu

R
ig

i

pi
nu

U
N

KN

0

1

pi
nu

St
ro

pi
nu

St
ro

pi
nu

Ta
ed

pi
nu

U
N

KN

0

1

Fr
ac

tio
n 

fro
m

 th
es

e 
sp

ec
ie

s.
..

...counted as these seed types

CWT118

MARSF
MARSP

Figure S7.5: The error matrix M for the Pinus example shows the probability that a seed

produced by each species (rows) will be counted as each seed type (column).

S7.2 Application to Pinus

The fitted model included diameter as a predictor for maturation and fecundity, random

effects for trees, and fixed and random effects for region-species groups in the AR(4)

model (table 3). The H ×M error matrix M has only a few fitted entries (fig. S7.5),

because most are unambiguous, as when a plot comes from a location where only one

species occurs or all seeds are identified only to genus level (DUKE BW, EE, EW, HW).

Exceptions are CWT118, where P. rigida occurs, but there are also P. strobus in the

region, and MARS HF and HP, where P. strobus occurs, but other pines occur in the

region. The estimates in fig. S7.5 are the elements Mh,m, the probability that a seed

produced by species h (rows) is counted as species m (columns).

As for the simulated example, seed prediction from the fitted model shows the addi-

tional uncertainty when predicting from parameter estimates (fig. S7.6a) rather than from

estimates of maturation and fecundity (fig. S7.6b). The former requires that covariates

can be found to accurately predict maturation and fecundity. In cases where covariates

do not explain fecundity, there can still be estimates of fecundity that predict seed trap
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Figure S7.6: Seed prediction from the AR(3) model fitted to Pinus. Predictions are from

the full posterior distribution (a) and from the fecundity estimates (b). Also shown is the

dashed line of agreement.

Random coefficients associated with individual trees are shown in fig. S7.7. The ran-

dom effects are not centered on zero, because they have been added to the fixed effect, thus

allowing more informative species comparisons. The range of variation between individual

trees differs by species and is greatest for P. rigida.
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Figure S7.7: Random intercepts (added to fixed effects for each species) for trees from

the coefficient vector βw in the AR(4) model.

Model comparisons and variable selection by DIC, RMSPE, and prediction scores
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available in the MASTIF package are not the focus here, where the attention centers on

description of the basic model. They are provided as a table (table S7.4). Full MCMC

chains are available for convergence diagnostics.

Table S7.4: Residual variance σ2, RMSPE, and DIC.

estimate SE CI 025 CI 975

σ2 10.70 0.14 10.50 11.00

rmspe 3.76 0.04 3.68 3.83

deviance -71700 2500 -76900 -67500

The partial autocorrelation in fecundity (table S7.5, standard errors in table S7.6) are

provided as output from MASTIF.

Table S7.5: Partial autocorrelation in log fecundity.

lag-1 lag-2 lag-3 lag-4 lag-5 lag-6 lag-7 lag-8

pinuEchi-DUKEBW 0.486 0.182 0.177 -0.042 0.063 0.011 -0.030 0.040

pinuEchi-DUKEEW 0.573 0.153 0.169 0.043 -0.020 -0.081 0.045 -0.000

pinuRigi-CWT118 0.370 0.123 0.121 -0.008 0.028 0.057 0.022 0.044

pinuStro-HARVBW 0.176 0.070 0.043 0.007 -0.017 -0.003 0.000 0.001

pinuStro-HARVS 0.182 0.072 0.055 0.001 -0.019 -0.004 0.001 0.002

pinuStro-MARSF 0.178 0.072 0.147 0.021 0.088 -0.001 -0.019 0.026

pinuStro-MARSP 0.191 0.140 0.099 0.012 0.032 0.037 -0.021 0.018

pinuStro-SCBILFDP 0.226 0.106 0.036 -0.047 -0.005 0.005 0.004 -0.001

pinuTaed-DUKEBW 0.494 0.213 0.075 0.049 0.039 0.040 -0.029 0.002

pinuTaed-DUKEEW 0.492 0.268 0.080 0.046 0.033 -0.017 -0.026 -0.019

pinuTaed-DUKEFACE1 0.395 0.156 0.147 0.007 0.042 -0.012 0.009 0.019

pinuTaed-DUKEFACE5 0.382 0.169 0.096 0.049 0.035 -0.001 0.015 0.030

pinuTaed-DUKEFACE6 0.361 0.161 0.097 0.072 0.019 0.024 0.001 0.010

pinuTaed-DUKEHW 0.457 0.164 0.179 0.024 0.042 0.004 -0.115 0.026

pinuVirg-DUKEBW 0.404 0.090 0.206 0.037 0.184 -0.016 0.015 -0.137

pinuVirg-DUKEEW 0.518 0.228 0.071 -0.006 0.073 -0.008 -0.103 0.062

pinuVirg-SCBILFDP 0.592 0.148 -0.319 0.070 0.108 -0.072 -0.018 0.034

S8 Posterior simulation: algorithm notes

S8.1 Maturation updates

Where available, maturation status is determined by observations zij,t. The sampling

distribution for unobserved maturation states in eq. (5) conditions on previous and current

state,

ρij,t ∼ Bernoulli(pij,t) (S8.15)
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Table S7.6: Partial autocorrelation standard error in log fecundity

lag-1 lag-2 lag-3 lag-4 lag-5 lag-6 lag-7 lag-8

pinuEchi-DUKEBW 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

pinuEchi-DUKEEW 0.000 0.000 0.001 0.000 0.000 0.001 0.001 0.001

pinuRigi-CWT118 0.002 0.002 0.002 0.001 0.001 0.001 0.001 0.001

pinuStro-HARVBW 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000

pinuStro-HARVS 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000

pinuStro-MARSF 0.001 0.002 0.001 0.001 0.000 0.000 0.000 0.000

pinuStro-MARSP 0.004 0.003 0.003 0.003 0.002 0.002 0.001 0.001

pinuStro-SCBILFDP 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000

pinuTaed-DUKEBW 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

pinuTaed-DUKEEW 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000

pinuTaed-DUKEFACE1 0.001 0.001 0.001 0.001 0.000 0.000 0.000 0.000

pinuTaed-DUKEFACE5 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000

pinuTaed-DUKEFACE6 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

pinuTaed-DUKEHW 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

pinuVirg-DUKEBW 0.001 0.001 0.000 0.000 0.000 0.000 0.001 0.000

pinuVirg-DUKEEW 0.005 0.005 0.006 0.002 0.004 0.004 0.002 0.007

pinuVirg-SCBILFDP 0.024 0.042 0.015 0.022 0.017 0.003 0.008 0.003

where

pij,t =

{
ρij,t−1 + (1− ρij,t−1)ρij,t+1Φ

(
v′ij,tβ

v
)

missing zij,t
zij,t otherwise

and Φ(·) is the standard normal distribution function.

S8.2 Joint fecundity and maturation updates

To impute states, fecundity and maturation status are either proposed jointly (this sec-

tion) or conditional fecundity of currently imputed mature individuals is updated sepa-

rately (next section). For joint updates, we factor maturation and conditional fecundity

as

[ψ∗ij,t, ρ
∗
ij,t] = [ψ∗ij,t|ρ∗ij,t][ρ∗ij,t] (S8.16)

Maturation year is a random walk, centered on the currently imputed maturation year and

subject to constraints imposed by observed or currently imputed states (mature individ-

uals cannot become immature, mature individuals remain mature). Possible maturation

years range from the last year in which an individual was observed in the immature state

to the first year in which that individual was observed in the mature state (section S2.3).

If there are no maturation/fecundity observations, then all information on maturation

status comes through the seed data. Maturation is proposed and accepted jointly with

fecundity for all trees on a plot year, with proposals subject to this one-way constraint on

maturation (section S2.3). This blocking is necessitated by the fact that the likelihood

for each trap-year conditionally depends on all tree-years for that plot (Clark et al., 2004).

Sampling of a plot-year block is summarized this way:
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[ψj,t,ρj,t|Yj,t, zj,t, {cij,t}
nj

i=1,M] ∝ P1 × P2 × P3 × P4 (S8.17)

where

P1 =

Sj∏
s=1

M∏
m=1

Poi
(
ysmj,t|Asj,tλsmj,t(ψj,t,ρj,t,u,M)

)
P2 =

nij∏
i=1

N(logψij,t|x′ij,tβx + . . . , σ2)I(ψij,t ≤ 1)1−ρij,tI(ψij,t > 1)ρij,t

P3 =

nij∏
i=1

Bernoulli(ρij,t|pij,t)

P4 =

nij∏
i=1

binom(cnij,t|ψij,t, c
f
ij,t)

where pij,t is given in eq. (S8.15).

Two methods are used, depending on the process model, both beginning with pro-

posed {ρ∗ij,t|ρj,t−1, ρij,t+1}
nj

i=1. Only cases where ρij,t−1 = 0 and ρij,t+1 = 1 can change

maturation state. A new maturation state is proposed with probability 0.5. Fecundity

is then proposed for all proposed mature ij from a normal distribution, with censoring

imposed by the proposed ρ∗ij,t. Here are the two methods that follow:

Method 1:

1. The proposed ψ∗ij,t|ρ∗ij,t come from a normal distribution centered on the currently

imputed ψij,t and censored as in eq. (7).

2. Accept/reject ρ∗j,t,ψ
∗
j,t as a block with probabilities for current and proposed from∏4

k=1 Pk.

Method 2:

1. The proposed ψ∗ij,t|ρ∗ij,t come from the conditional normal distribution obtained

from P2. Details for this sampling distribution are given for the most complex case of the

AR(p) model in section S8.8.5.

2. Accept/reject ρ∗j,t,ψ
∗
j,t as a block with probability P1 × P3 × P4.

S8.3 Hamiltonian updates of conditional fecundity

Hamiltonian updates accelerate mixing for continuous states, but they cannot be used

with discrete states, in this case maturation status. However, mixing of fecundity is

accelerated with Hamiltonian updates for currently imputed mature individuals. Each

observation is a length-M vector ysj,t. Element m has Poisson intensity Asjλsmj,t =

Asj
∑nj ,t

i=1 S[sjt,i]e
ψij,tmi[h], where mi[h],m is the row vector mh corresponding to the species

of individual i and the column for seed type m. The Hamiltonian can be written as

H(ψij,t, p) = B(ψij,t) + C(p) (S8.18)

where C(p) =
∑nj

i=1
p2i
2mi

is the kinetic energy, taken as a quadratic function of momentum

variables mi, which are tuned to optimize performance (Neal, 2011). The first term

incorporates the conditional distribution,
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B(ψij,t) = − log[ψij,t|yj,t, µij,t, σ2)] (S8.19)

∝
∑
m,s

(−ysmj,t log λsmj,t + Asjλsmj,t) +
1

2σ2
(ψij,t − µij,t)2 (S8.20)

The gradient is used to direct proposals efficiently:

∂B

∂ψij,t
= eψij,t

∑
m

mi[h],m

∑
s

S[sjt,i]

(
− ysmj,t
λsmj,t

+ Asj

)
+

1

σ2
(ψij,t − µij,t) (S8.21)

Hamiltonian updates are individually slow, but affect larger steps then a Metropolis

random walk, especially with large data sets. The two methods are mixed stochastically

in the Gibbs sampler.

S8.4 Fecundity coefficients

Direct sampling of coefficients in βx and βv is available from Gaussian conditional pos-

terior distributions. Gaussian prior distributions are non-informative. For βx conditional

distributions marginalize random effects (see below). The variance σ2 has an inverse

gamma prior – and is sampled directly from the conjugate inverse gamma posterior.

S8.5 Random individual effects

Let wij,t be a design vector holding all or some of the columns in xij,t. There is an

individual-effects coefficient matrix βwij,

ψij,t ∼ N
(
x′ij,tβ

x + w′ij,tβ
w
ij, σ

2
)

(S8.22)

The prior distribution includes

βwij|Bw ∼MVN(0,Bw) (S8.23)

Bw ∼ IW (Bw, df) (S8.24)

where df = Qw + 2, Qw is the number of columns in wij,t, and Bw = Ir is a prior diagonal

matrix. The conditional posterior matrix is

βwij|βx,Bw ∼MVN(Vijvij,Vij) (S8.25)

where

vij =
1

σ2

∑
t∈{ti}

wijt(ψijt − x′ijtβ
x) (S8.26)

Vij =
1

σ2

∑
t∈{ti}

wijtw
′
ijt + B−1w (S8.27)
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The summations are taken over all observation years for an individual i, the set {ti} for

which the individual is mature. Here is the conditional for the covariance,

Bw|{βwij} ∼ IW

(∑
βwijβ

w′

ij + df × B̃,
∑
j

nj + df

)
(S8.28)

where B̃ is the prior covariance.

S8.6 Random groups in the year and AR( p) models

The year and AR(p) models allow for group random effects on year and lag coefficients,

respectively–if groups are defined by the user, they will be treated as random. This is

done because year and lag terms across groups are highly unbalanced. Plot-species groups

can hold different numbers of plots and trees in different years. Plots can be established

at different times, have different plot areas, and support very different communities of

species. For a given species, abundance across plots may range from zero to high. Within

plots, numbers of mature individuals vary across years with recruitment, maturation, and

death. Within posterior simulation, their imputed maturation statuses change by tree

and year. The sizes of design matrices are thus dynamic.

Given this imbalance, treating groups as random provides the advantage that no arbi-

trary rules are needed to catch computation errors that would result from plot-years that

are at some iterations imputed to have mature trees and other iterations not.

S8.7 Year effects

For a single group, years effects are fixed, drawn from the conditional

γt ∼ N(Vtvt, Vt) (S8.29)

V −1t =
nt
σ2

+ 1/τ 2 (S8.30)

vt =
1

σ2

∑
i

(ψi,t − µi,t) (S8.31)

With multiple groups, there are random year effects across groups:

γg,t ∼ N(Vtvt, Vt) (S8.32)

V −1g,t =
ng,t
σ2

+ 1/τ 2t (S8.33)

vg,t =
1

σ2

∑
i∈g

(ψi,t − µi,t − γt) (S8.34)

Years have a sum-to-zero constraint imposed in Gibbs sampling. The intercept for a given

year is the overall intercept plus the year effect for that year. The variance for random

effects is

τ 2t ∼ IG

(
2 +

Gt

2
, 1 +

1

2

∑
g

γ2g,t

)
(S8.35)
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where Gt is the number of groups available in year t, i.e., those having mature individuals

in that year.

S8.8 AR( p) model

The AR(p) model allows for the dependence of the current states of ψt on p previous

states. The process is homogeneous in time, because the lag coefficients αp are constant.

We start with a few words on structure.

S8.8.1 Imputed past, predicted future

AR models handle the early years in different ways. There is no AR(p) estimate for years

t ∈ {1, . . . , p}. One of the more common ways to deal with these years is to simply

condition on them. This seems like a big price to pay. Because MASTIF is a state-space

model, and we are imputing fecundity and maturation anyway, it makes sense to impute

fecundity/maturation for years t− p, . . . , t− 1.

So while we are imputing the past, it makes sense to predict the future. Conditionally,

fecundity in the final year Ti depends on the future, up to year Ti+p. To accommodate past

and future, MASTIF imputes backward p years from the first observation and predicts

forward p years beyond the last observed year.

A consistent treatment would appear to demand that AR effects be restricted to

individuals that have been mature for the past t− p years. Note that this would not be

a concern if maturation state was known. We adopt this rule, so lag effect estimates are

not biased downward by the inclusion of trees that might have immature during one or

more of years t−p, . . . , t−1. Although fecundity is imputed for all years, including before

observations began, sampling of coefficients for fixed effects and lag effects is restricted to

years in which trees were observed and mature.

S8.8.2 AR(p) model structure

To avoid further notation, the description that follows applies only to tree-years for which

the mature state extends back to t − p years. Also to simplify notation we omit the

subscript j. Note that multiple plots j might fall within a group g.

Conditionally, the model for an individual i in group g ∈ {1, . . . , G} can be written as

ψig,t|µig,t,α,αg[i], ψ̃ig,t ∼ N
(
mig,t, σ

2
)

(S8.36)

where

mig,t = µig,t +

p∑
l=1

(αl + αg[i]l)ψig,t−l (S8.37)

= µig,t + (α+αg[i])
′ψ̃ig,t (S8.38)

µig,t = x′ig,tβ
x is the fixed effect, ψ̃ig,t = (ψig,t−1, . . . , ψig,t−p)

′ is the vector of lagged

fecundities for (ig, t), α = (α1, . . . , αp)
′ is the vector of fixed effects for lag l = 1, . . . , p,

and αg = (αg1, . . . , αgp) is the random effect for group g with prior distribution
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αg ∼MVN(0,Aα) (S8.39)

Aα ∼ IW
(
Ãα, df

)
(S8.40)

To facilitate sampling, the fecundity values are organized into a vector ψ = {ψig,t|i =

1, . . . , n, g = 1, . . . , G, t = 1, . . . , Ti} and a corresponding matrix of p lag terms. For

example, a vector with these subscripts

ψ = (ψi,g,t, ψi,g,t+1, . . . , ψi,g,Ti , ψi+1,g,t, . . . , ) (S8.41)

has the lag matrix with matching rows and p columns,

Ψ̃ =



ψi,g,t−1 . . . ψi,g,t−p
ψi,g,t . . . ψi,g,t+1−p

...
...

...

ψi,g,Ti−1 . . . ψi,g,Ti−p
ψi+1,g,t . . . ψi+1,g,t+1−p

...
...

...


(S8.42)

S8.8.3 Sample fixed effects

To sample fixed effects, we move a few terms to the left,

m = Ψ̃α (S8.43)

where m has elements ψig,t−µig,t−α′g[i]ψ̃ig,t, and, again, αg[i] indicates the vector of lags

for the group to which individual i belongs. The conditional posterior matrix for fixed

effects is

α|{αg} ∼MVN(Vv,V) (S8.44)

v = σ−2Ψ̃
′
m (S8.45)

V−1 = σ−2Ψ̃
′
Ψ̃ + 0.001× Ip (S8.46)

S8.8.4 Random group effects

For random effects, make a slight change in the mean vector and write

αg ∼MVN(Vgvg,Vg) (S8.47)

vg =
1

σ2

∑
i,t

ψ̃
′
ig,tmig,t (S8.48)

Vg =
1

σ2

∑
i,t

ψ̃ig,tψ̃
′
ig,t + A−1α (S8.49)
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where mig,t = ψig,t−µig,t−α′ψ̃ig,t. The summations are taken over all observation years in

which individual i has been in the mature state for the previous p years, for all individuals

in group g. Here is the conditional for the p× p covariance matrix,

Aα|{αg} ∼ IW

(
G∑
g=1

αgα
′
g + df × Ip, G+ df

)
(S8.50)

S8.8.5 Latent states

Latent states in the AR(p) model are sampled by proposing from the conditional posterior

for the fecundity/maturation submodel ψt, zt|ψ{−t}, zt−1, zt+1, where ψ{−t} is the set of all

fecundity values except t, and accepting from the likelihood (Method 2 in section S8.2).

To reduce clutter, we now omit subscripts ijg. If there are random groups in the model,

then everything below is handled at the group level, with lag coefficient αl being replaced

with αl + αgl for group g.

To isolate the terms in ψt the AR(p) model can be written as

ψt ∼ N
(
mt, σ

2
)

(S8.51)

where

mt = µt +

p∑
l=1

αlψt−l (S8.52)

The exponent of the conditional distribution ψt|ψ{−t} can be factored this way:

1

σ2

[
(ψt −mt)

2 +

p∑
k=1

(nt,k − αkψt)2
]

(S8.53)

where

nt,k = ψt+k − µt+k −
p∑
l=1

αlψt+k−lI(l 6= k) (S8.54)

To sample latent states, we propose from

ψt ∼ N (V vt, V ) (S8.55)

where

vt =
1

σ2

(
mt +

p∑
k=1

nt,kαk

)
(S8.56)

V −1 =
1

σ2

(
1 +

p∑
k=1

α2
k

)
(S8.57)

Proposals are accepted as a block for each plot-year in the data set, based on the likelihood

for seed data (see Method 2).
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S8.9 Other parameters

The error variance σ2 is sampled from the conditional inverse gamma posterior distribu-

tion.

If there are no random groups, the dispersal parameter u is sampled with Metropolis,

with an adaptive proposal variance and truncated normal prior distribution,

[u] ∝ L×N(u|u0, U0)I(umin < u < umax) (S8.58)

where the likelihood L is
∏

r,s,j,t Poi
(
yrsj,t|Asjλsmj,t(u,ψj,t,ρj,t,m)

)
, u0 and U0 are the

prior mean and variance dispersal parameters, and (umin, umax) is an interval selected

with prior knowledge.

If there are random groups, then there is an additional stage for the global mean. The

previous distribution applies to ug for group g,

[ug] ∝ L×N(ug|u, U) (S8.59)

The ug are proposed and accepted as a block. The global mean and variance have condi-

tional distributions:

u|u1, . . . , uG, u0, U, U0 ∼ N (V v, V ) (S8.60)

V −1 =
G

U
+

1

U0

(S8.61)

v =
1

U

∑
g

ug +
u0
U0

(S8.62)

U |u1, . . . , uG, u ∼ IG

(
2 +

G

2
, 1 +

1

2

∑
g

(ug − u)2

)
(S8.63)
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