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Abstract

Probabilistic forecasts of species distribution and abundance require models that ac-

commodate the range of ecological data, including a joint distribution of multiple species

based on combinations of continuous and discrete observations, mostly zeros. We de-

velop a generalized joint attribute model (GJAM), a probabilistic framework that readily

applies to data that are combinations of presence-absence, ordinal, continuous, discrete,

composition, zero-inflated, and censored. It does so as a joint distributions over all

species providing inference on sensitivity to input variables, correlations between species

on the data scale, prediction, sensitivity analysis, definition of community structure, and

missing data imputation. GJAM applications illustrate flexibility to the range of species-

abundance data. Applications to forest inventory demonstrate species relationships re-

sponding as a community to environmental variables. It shows that the environment can

be inverse predicted from the joint distribution of species. Application to microbiome

data demonstrates how inverse prediction in the GJAM framework accelerates variable

selection, by isolating effects of each input variable’s influence across all species.
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Introduction1

Efforts to explain and predict biodiversity (e.g., Iversen and Prasad 1998; Ferrier et al. 2002;2

Guisan and Thuiller 2005; Gelfand et al. 2006; Araujo, and Luoto 2007; Botkin et al. 2007;3

Chakraborty et al. 2010; Benito et al. 2013, Booth et al. 2014) confront three challenges4

summarized in our title. First, median-zero refers to the fact that most of the values in species-5

abundance data sets are typically zero (Fig. 1b, c). Second, species are not independent6

and thus models must be multivariate. Finally, data may be continuous (density, basal area,7

biomass), discrete (presence/absence, counts), censored (detection limits, intervals, maximum8

values), composition (proportional of a total), nominal, and ordinal; such multifarious combi-9

nations of observations are not described by standard distributions. We describe generalized10

joint attribute modeling (GJAM) to address this challenge, providing a common framework11

for synthesis of ecological attribute and abundance data, both for estimating responses to the12

environmental and for prediction.13

GJAM is motivated by the difficulties faced by all species distribution models (SDMs),14

including joint species distributions models (JSDMs)(Clark et al. 2014, Pollock et al. 2014)15

and predictive trait models (PTMs) (Clark 2016). SDMs and JSDMs omit much of the in-16

formation contained in field data, where abundances and attributes are often documented in17

multifarious ways. Some species groups are counted. Those not easily measured are recorded in18

ordinal categories, such as ’rare’, ’moderate’, and ’abundant’. Presence-absence of a predator,19

pathogen, or mutualist might be recorded. Attributes such as body condition, infection status,20

and herbivore damage can be included. Even condition of a sample plot can be relevant. For21

example, grazer abundance might be observed together with evidence for plot-level grazing22

damage, as ordinal scores (’none’ to ’severe’) or categorical (nominal) categories. How would23

a model combine insect counts of multiple species from pitfall traps with herbaceous cover?24

Or fishing returns with presence-absence by-catch of threatened species? Or microbiome data25

with host condition and abundance (Fig. 1a, b)? All of these variables are ’responses’, not26

predictors–they are just as random as abundance values, both affecting and responding to27

other variables. All are recorded on different scales. We introduce the term generalized joint28

attribute model (GJAM) for the model that accommodates these attributes jointly.29
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The challenges of multifarious data may account for two tendencies in the SDM literature,30

i) to model on a transformed scale that is different from the data (e.g., a non-linear link31

function) and ii) to model something other than what was observed, most often substituting32

presence-absence for observations that come from many scales. Although several JSDMs apply33

to abundance data (Latimer et al. 2009; Thorson et al. 2015), and one applies to combined34

presence-absence and continuous abundance data (Clark et al. 2014), most assume presence-35

absence (Finley et al. 2009; Ovaskainen et al. 2011; Ovaskainen and Soininen 2011; Pollock et36

al. 2014; Harris 2015), even when data are not collected this way. The question becomes, do37

these modeling decisions affect inference and prediction?38

First, the covariance matrix estimated in a hierarchical JSDM with non-linear link functions39

(Finley et al. 2009; Ovaskainen et al. 2011; Ovaskainen and Soininen 2011; Pollock et al. 2014;40

Thorson et al. 2015) is not estimated on the data scale and thus is not to be interpreted as a41

covariance between species abundances. When response variables are continuous and covary,42

their dependence structure is most efficiently modeled with a covariance matrix. However,43

many ecological data types are discrete (counts, ordinal scores, zeros, censored intervals). A44

covariance matrix can still be used in models of such data if it is introduced at a first stage45

of a hierarchical model, provided there is a non-linear link function to data. For example, a46

generalized linear model (GLM) can specify a Poisson distribution for counts, yis ∼ Poi(λis)47

of species s in observation i. This model for discrete counts does not admit a covariance48

matrix. The intensity λis is continuous, but unless there is a scale transformation, models49

for it too do not admit a covariance, because λ is constrained to positive values. The log50

transformation, or link function, introduces a new issue that is not widely appreciated, the fact51

that covariance cannot be interpreted on the scale of the observations yis. Whereas intensity λis52

has the transparent interpretation on the same scale as the counts themselves, the covariance53

on the log scale does not (Fig. 2a). Then too, the explanatory variables subjected to non-54

linearity transformation also no longer have the transparent interpretations of ’main effect’55

and ’interaction’. On the transformed scale, all variables are part of interactions imposed by56

the form of the link function. If a sample contained multifarious data, complications would57

compound as each type of observation might require a different link function to allow for the58

second-stage continuous model that includes covariance. If it is already hard to attach meaning59

to covariance on the log scale, how can we interpret covariance structure where some responses60

are log scale and others logit scale (Fig. 2b)?61

Non-linear link functions are generally not motivated by theory. A log link might be used62
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because it accommodates an increase in variance with abundance. Mean-variance relationships63

are important to consider, but model adequacy is generally evaluated on the basis of residual64

errors or data prediction (e.g., Ver Hoef and Boveng 2007, Warton et al. 2012, Hui et al. 2015)65

rather than theory. Non-linear link functions can arise naturally when a likelihood function is66

written in exponential family form. However, models on the observation scale could also be67

valuable for many applications, particularly when observations on different scales are combined.68

They have transparent interpretation.69

The second tendency, to substitute presence-absence models for data collected in other70

ways has not been evaluated for a joint distribution of species. When a study changes the71

observations, the loss of information (e.g., when abundance on many scales is reduced to72

’presence’) should affect estimates. The question is, how much?73

If collapsing abundance to presence-absence or changing the data in other ways might come74

at a cost, why is it so often done? The consequences are not discussed in the literature and may75

be unrecognized. Without a GJAM, the effects demonstrated here would be hard to quantify,76

due to the different link functions used for presence-absence and abundance data. There has77

been little attention to the challenge posed by multifarious data.78

The problem of zeros in species abundance data has been discussed in the context of uni-79

variate models (e.g., Martin et al. 2005). For count data, Poisson, negative binomial, and80

even hyper-zero-inflated models perform poorly when the fraction of zeros approaches 50%81

(Ghosh et al. 2012, Clark and Gelfand 2016). In many ecological data sets zeros can often82

exceed > 90% of all observations (Fig. 1), and the traditional solutions are limited. And again,83

presence-absence models cannot accommodate any species that are present in all samples. In84

joint models the challenge of overwhelming zeros must be confronted with models that also85

admit multifarious data.86

The need for a model that allows flexibility for continuous, discrete, ordinal, and com-87

position data, with censoring and zero inflation motivates a GJAM. We describe a synthetic88

framework for observations of many types, modeling the data on the scale they are collected,89

imposing a reference scale only for data that have none (e.g., presence-absence). The coeffi-90

cients and species correlations in GJAM are interpretable on the observation scale.91

An important extension of GJAM involves an expanded role for prediction. Objectives of92

SDM studies most often concern community-level variables, such as species richness, diversity,93

or biomass (Elith et al. 2006, Ferrier et al. 2002, Baselga and Araujo 2010, Guisan and Rahbek94

2011, Mokany and Ferrier 2011, Mokany et al. 2011, 2012). Formal predictive modeling is not95
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possible from SDMs fitted to species independently, requiring an informal approach that omits96

relationships between species (e.g. Calebrese et al. 2014). Beyond showing the value of in-97

sample and out-of-sample prediction to verify that GJAM applies to the many data types and98

species responses jointly, we go further. Inverse prediction provides a composite estimate of99

environmental importance for the entire community (Clark et al. 2011, 2013). It opens new100

options for predicting the environment from species, because it combines information from101

all species in a synthetic prediction with full uncertainty. Predictive distributions allow us to102

explore community structure on the basis of responses to environmental predictors, rather than103

presence-absence or abundance patterns. We first develop the model, including motivation,104

framework, and its application to multifarious data. We then discuss the role of prediction in105

GJAM. Finally we provide applications.106

Model development107

Consider species abundance data where adults are recorded on a continuous scale (e.g., basal108

area) and seedlings of the same or different species are recorded as discrete counts. We refer to109

these data types are continuous abundance (CA) and discrete abundance (DA), respectively.110

We wish to quantify their responses not only to environmental variables, but also their residual111

relationships to each other. For example, do they tend to covary, beyond what can be explained112

by environmental variables? Any transformations we might impose distort the scales and thus113

complicate interpretation. However, transforming data to different scales is not the only option.114

An alternative is available where discrete data are viewed as approximate (aggregated) versions115

of continuous data. This assumption is often implicit, as when counts (discrete) are used to116

model density (continuous) in the Poisson example above: yis has the same scale as λis, but117

one is a discrete count, the other a continuous intensity.118

An alternative means for integrating discrete and continuous data on the observed scales119

makes use of censoring, which affects weight of the observations and accommodates effort. For120

a specific example of sample weight that does not involve censoring, consider Poisson regression121

with a log link, which best predicts low values. The weight of an observation depends on its122

variance (e.g., Ver Hoef and Boveng 2007). Constant variance on the log scale places dispropor-123

tionate weight on low values. There is nothing inherently ’correct’ about this weighting, and124

it could be undesirable where low values are sporadic and noisy relative to large values, which125

could most important for fitting and prediction. Censoring affects the weight of an observation126

in a different way. Censoring extends a model for continuous variables across censored inter-127
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vals. Survival analysis is a familiar example that can involve ’left-censored’, ’interval-censored’,128

or ’right-censored’ observations. Continuous observations are uncensored. Discrete observa-129

tions are censored and can depend on sample effort. Intensive effort in survival analysis, e.g.,130

sampling daily rather than weekly or monthly, decreases the duration of censored intervals,131

decreases variance, and increases the weight of observations (Appendix S1). We learn most132

about mortality when all subjects die at times when sampling is frequent. We learn least when133

all subjects die within the same censored interval, which is most likely when intervals are long.134

Censoring can be used with effort for an observation to combine continuous and discrete135

variables with appropriate weight. In composition data, effort is the total number of objects136

observed, e.g. the reads per observation in microbiome data. In census-count data, effort is137

determined by the size of the sample, search time, or both. It is comparable to the offset138

in generalized linear models (GLM). We discuss how these elements contribute to the model139

framework in the next section.140

Model framework141

Elements of the model are introduced first, followed immediately by a simple example demon-142

strating their relationships. We then consider applications to multiple data types.143

A sample consists of n observations. Each observation i consists of two vectors, (xi,yi)
n
i=1,144

where xi is a vector of predictors q = 1, . . . , Q, and yi is a vector of responses yis, with s =145

1, . . . , S. The combinations of continuous and discrete measurements in yi are accommodated146

by locating each observed Y in two probability spaces, one continuous W and another discrete147

Z. In the previous example, basal area of trees has either zero or positive values. One way148

to model continuous data with zeros is the Tobit, introduced for economic data (Tobin 1958,149

Cameron and Trivedi 2005), but increasingly used in environmental applications, including150

agriculture (Bamire et al. 2002), precipitation (Sahu et al. 2010) and species distributions151

(Clark et al., 2014). In GJAM the two types of observations are identified by integer labels152

zis ∈ {0, 1}. Positive values for yis are assigned to a discrete interval k = 1. Zero values are153

assigned to the interval labeled k = 0 (Fig. 3a). In the Tobit model (and GJAM) fitting relies154

on a latent continuous variable wis, which is known and equal to yis when yis > 0. When155

yis = 0, the continuous variable wis occupies the censored interval zis = 0 and is known only156

to be negative.157

We can extend this simple structure to accommodate each data type (Fig. 3) as follows. To158

generalize, a vector wi ∈ RS locates yi in continuous space. This continuous space allows for159
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dependence between response variables with a covariance matrix. A second vector of integer160

values zi ∈ {0, . . . , K − 1}S locates yi in discrete space. This discrete space allows for error161

in discrete observations, zero-inflation being the most common example. Each element of zi162

assigns a corresponding element of wi to an interval zis = k. The number of intervals K can163

differ between observations and species, due to different levels of effort Eis and to different164

ways of observing different species. In other words K can have subscripts i, s, or both.165

To connect continuous and discrete vectors there is a set of partition points pis,k ∈ P that166

locate the continuous wis within discrete intervals zis = k. For now, assume that the partition167

does not differ between observations and species, pis,k = pk. Interval k is bounded by two168

points in the partition (pk, pk+1]. The intervals are contiguous and fully partition the real line169

(−∞,∞). Unless there is zero-inflation, k = 0 has the partition (p0, p1] = (−∞, 0]. The last170

interval is (pK ,∞).171

Finally, intervals are censored when observations are discrete; they are uncensored when172

observations are continuous. The set of censored intervals is C, again, those intervals for which173

yis is discrete, and wis is unknown. Within uncensored intervals yis is continuous and, thus,174

wis is known.175

For prediction, the model can be thought of like this: There is a vector of continuous176

responses wi generated from mean vector µi and covariance Σ (Fig. 4a). The partition pis177

segments the continuous scale into intervals, some of which are censored and others not. A178

value of wis that falls within a censored interval k generates observed yis = zis = k. A value of179

wis that falls in an uncensored interval is assigned wis (examples in Figure 3).180

Of course, data present us with the inverse problem: the observed yis are continuous or181

discrete, with known or unknown partition (Fig. 4b). The discrete class depicted for observed182

yis = 3 in Figure 4b can correspond to a continuous wis anywhere within the shaded interval183

on the W axis. Depending on how the data are observed, we must impute at least the elements184

of n× S matrix W that lie within censored intervals. Unknown elements of Z and P will also185

be imputed in order to estimate parameters (see below).186

Before proceeding further, consider again the biomass example in Figure 1c for 98 tree187

species on forest inventory plots. Together, discrete zeros and continuous positive values define188

the K = 2 intervals, indexed as k ∈ {0, 1}. Because the partition is the same for all observations189

and species, all elements in the partition P can be represented by a length-(K + 1) = 3 vector,190

p = (p0, p1, p2) = (−∞, 0,∞). Because k = 0 is censored, and k = 1 is not, the set of censored191

intervals is a single value, C = {0}. To get specific, if an observation vector for S = 3 species192
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is yi = (3.7, 0, 12.1), then zi = (1, 0, 1), and wi = (3.7, wi2 < 0, 12.1).193

The advantage of this framework comes from the fact that modeling the contrasting data194

types commonly collected by ecologists requires no more than different combinations of known195

and unknown {W,Z,P}. With variable effort and continuous yis the wis is known and equal196

to yis (black lines in Figure 3). When yis is discrete, the interval k is censored, wis is imputed197

(grey lines in Figure 3), bounded by the two points in the partition (pis,k, pis,k+1], with the i198

and s subscripts needed when there is differing effort between observations, species, or both.199

Discrete label zis is imputed when there can be misclassification of discrete observations; zero200

inflation is an example (Fig. 3c). Zero inflation occurs when the recorded state is yis = 0, and201

the true state is zis > 0. Partition elements pis,k are imputed when the scale is unknown (e.g.,202

ordinal data)(Fig. 3g).203

The model combines each of the foregoing elements. The wis, zis, and pis,k differ for each204

data type and map to observations,205

yis =

 wis continuous

zis, wis ∈ (pzis , pzis+1] discrete
(1)

where pis,k = pzis . If there is no error in assignment of discrete intervals, then zis = k (the206

observed label is the true label), and the model for wi is207

wi|xi,yi ∼ MVN(µi,Σ)×
S∏

s=1

Iis (2)

Iis =
∏
k∈C

I
I(yis=k)
is,k (1− Iis,k)I(yis 6=k)

where the indicator function I(.) is equal to 1 when its argument is true and zero otherwise.208

The indicator209

Iis,k = I(pis,k < wis < pis,k+1) (3)

means that wis lies within the correct interval k. It applies only to the censored intervals,210

i.e., the set C. The mean vector µi = B′xi contains the Q × S matrix of coefficients B and211

the length-Q design vector xi. Σ is a S × S covariance matrix. The partition depends on212

observation i if effort varies between observations (next section) and between responses s when213

they are observed on different scales. For ordinal data the partition is inferred (Fig. 3g). Eqn214

2 is conditional on the discrete label zis = k being correct. The extension to incorrect zis,215

including zero inflation, are given in Appendix S1.216
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The model accommodates the diversity of observations contained in field data. Extending217

the previous example, if large values are censored above a threshold U , e.g., a detector saturates218

or an observer does not count higher than Y > U , there will be K = 3 intervals with K+1 = 4219

elements in the sample partition p = (−∞, 0, U,∞)(Fig. 3b). Uncensored values fall in interval220

zis = 1, defined by 0 < wis < U . An observation yi can now take values on [0, U ]S, with point221

mass at both 0 and U . Between 0 and U values are continuous. In examples that follow222

each ecological attribute is accommodated by different combinations of known and unknown223

{W,Z,P}, with a subset of intervals being censored, contained in the set C.224

Scale equivalence and the role of effort225

Discrete data in ecology are often counts, which depend on the level of effort. That effort can226

differ between observations i and between species s within the same observation. In GJAM,227

effort enters through the partition P , thus affecting the range of values for wis in eqn (2).228

Where effort Eis = 1 the approach imposes no scale difference between yi and wi, despite the229

fact that each response in yi can have different scales. Before discussing how effort affects230

different types of observations we address the issue of scale.231

Consider again a response vector that includes density of seedling counts and basal area232

of trees, corresponding to columns in matrix B. Individual coefficients in this matrix βq,s233

describe the response of s to predictor q. They have scales of density/xq for seedlings and of234

basal area/xq for trees, where xq is the dimension for predictor q. Likewise covariance Σ has235

scales of density × density (two seedling species), basal area × basal area (two tree species),236

and density × basal area (a tree and a seedling species). The coefficients and covariance have237

direct interpretation in terms of what is observed, because yis is on the same scale as wis. It238

can also be useful to compare species on the correlation scale, where R is the correlation matrix239

associated with Σ (Appendix S1).240

Where there is no absolute scale, including presence-absence (PA), categorical (CAT),241

and ordinal count (OC) data, one is imposed. Observations recorded as success/failure for242

presence-absence or low/medium/high for ordinal data are not absolute scales, but they have243

relative scales. We anchor the location of the first interval at zero and impose a unit-variance244

scale (Chib and Greenberg 1998). In other words, the correlation R is also the covariance Σ.245

Where effort Eis 6= 1 there is an effect on scale, allowing observations from different plot246

areas or composition counts to be included in the same analysis. For discrete counts, large plots247

must contribute more weight than small plots. Microbiome samples with high total reads must248
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contribute more than those with few reads. To improve on current practice (e.g., McMurdle249

and Holmes 2014), effort should vary to account for the fact that observations with the most250

effort have the smallest variance and, thus, the largest effect on the fit.251

GJAM achieves effort-based weighting through the partition. Where effort E = 1, the252

partition for discrete counts 0, 1, 2, . . . begin at −∞, followed by midpoints between count253

values, p = (−∞, 1/2, 3/2, . . . ). For zis = k the interval is thus (pi,k, pi,k+1] = (k−1/2, k+1/2].254

When effort varies between observations the partition shifts to the ’effort scale’,255

pik =

(
k − 1/2

Ei

,
k + 1/2

Ei

]
(4)

If observations are animals counted per hour, Ei can be search time. If observations are benthic256

organisms per sediment core, Ei can be core volume. If observations are seedlings per plot,257

then Ei can be the area of plot i. Because plots have different areas one might choose to model258

wis on a ’per-area’ scale (density) rather than a ’per-plot’ scale. The upper portion of Table259

1 compares two plots having counts that result in the same density of 100 trees per ha, but260

differ in plot area. The observation scale is counts per plot. The effort scale is area. The wide261

partition on a small 0.1-ha plot admits large variance around the observation of 10 trees per262

0.1 ha plot; the partition width is 10 trees ha−1. Conversely, a narrow partition on a larger263

1.0-ha plot constrains density to a narrow interval (1 tree ha−1) around the observed 100 trees264

per plot.265

In microbiome data effort accommodates the differing reads per sample. The lower portion266

of Table 1 compares count composition data, where effort Ei is the total count for observation267

i, and wis lies on the composition scale: when yis is greater than zero and less than Ei, then268

wis ∈ (0, 1). Using the partition of eqn (4) the two observations that represent the fraction269

0.10 in Table 1 with different effort (total reads in PCR data) are responsible for the declining270

predictive coefficient of variation in Figure 5b.271

Censoring and effort combined are shown in Figure 5. A simulated example is shown in272

Figure 5a, where data are censored by the so-called ’octave scale’, discrete observations recorded273

as (0, 1, 2, 4, 8, . . . ) (Preston 1948; Muller-Dombois and Ellensburg, 1974; Gauch 1982; Moore274

and Chapman, 1986, Jackson and Sullivan 2009). They are modeled with GJAM on this275

observation scale, allowing for increasing variance with increasing mean, a relationship that276

can be desirable, depending on application. Figure 5b exploits censoring to weight composition277

count data by effort per observation, in this case the number of reads from PCR data (see278

Synthesis of microbiome data).279
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Application to multifarious data280

Attribute data differ only in terms of which of W,Z,P are observed versus imputed. Data281

types are summarized here and compiled in Table 2.282

Continuous abundance (CA) data can be concentration, biomass, density, basal area, leaf283

area, cover, and so on. The previous section discusses how zeros and thresholds in continu-284

ous data are accommodated by censoring (Fig. 3a, b). Where responses include zero GJAM285

provides an alternative to log transformation, which can place disproportionate weight on low286

values, does not allow zeros, and is not interpreted on the observation scale. The univariate287

counterpart of GJAM is a Tobit model. Previous application to multivariate data includes288

Clark et al. (2014).289

Discrete abundance (DA) data arise from counts (Fig. 3e). Count data are often not well290

described by standard distributions, such as the Poisson or the negative binomial, and perform291

poorly when zeros are common. The negative binomial can be more variable than the Poisson,292

but not less. When used for counts of multiple species, the multinomial distribution induces293

a negative covariance (e.g., Haslett et al. 2006, Paciorek and McLachlan 2009, deValpine294

and Harmon-Threatt 2013, Mandal et al. 2015). When the total count in the multinomial295

distribution is related to abundance a separate model is needed for this total (e.g., Royle 2004).296

By treating observed counts as a censored version of true abundance GJAM accommodates297

effort (Table 2), and parameters can be interpreted on the observation scale or the effort scale.298

Presence-absence (PA) data include only two categories, {0, 1}(Fig. 3d). The multivariate299

probit model of Chib and Greenberg (1998, see Pollock et al. 2014 for an ecological application)300

is a special case of GJAM for PA data, where both intervals are censored (Table 2). Because301

there is no scale, there is an imposed unit-variance scale.302

Ordinal count (OC) data are collected where abundance must be evaluated rapidly, where303

precise measurements are difficult, or absolute scales are difficult to apply (Thuiller 2002).304

Because there is no absolute scale the partition must be inferred (Fig. 3g). Consider the ordinal305

scale represented by categories with these labels: (absent, rare, intermediate, abundant). The306

sample partition is ps = (−∞, 0, ps,2, ps,3,∞), where elements 2 and 3 are estimated (Fig. 3g).307

The zero anchors location, and unit variance imposes a scale. The model of Lawrence et al.308

(2008) is a special case for ordinal counts in GJAM (Appendix S1).309

Composition data may be continuous fractions with a sum-to-one constraint (fractional310

composition) or discrete counts. Both have interpretation on the relative abundance [0, 1] scale,311

and both require point mass at zero and one. Due to the sum-to-one (fractional composition)312
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or sum-to-Ei (count composition) constraint, there is information on only S − 1 columns in313

Y. Composition-count (CC) data are composition data reported as numbers of each species314

counted (Table 1). Composition counts are only meaningful in a relative sense; they provide315

no information on absolute abundance (Haslett et al. 2006, Paciorek and McLachlan 2009, de316

Valpine, and Harmon-Threatt 2013). The total count for a sample is the effort Ei =
∑

s yis.317

Common examples include molecular sequence data (e.g., Lauber et al., 2009), paleoecology318

(Brewer et al. 2012, Haslett et al. 2006), and fungal assays (Saucedo-Garcia et al. 2014).319

In paleoecology total counts can differ widely between observations (www.neotomadb.org).320

The number of DNA sequence reads in microbiome data can range over orders of magnitude.321

A practice that is widespread in the microbiome community rarifies count data to achieve322

approximate equity between samples. This amounts to a massive manipulation of data that323

can throw away vast amounts of information. Alternative model-based approaches applied to324

counts are limited to single taxa (McMurdle and Holmes 2014). A multinomial model with325

second-stage covariance is not on the data scale. Moreover, dominance of zeros in microbiome326

data limits application of most approaches (Paulson et al. 2013, Li 2015).327

GJAM accommodates the discrete observations and the underlying relative abundance328

scale. A sample count can take values yis ∈ {0, 1, 2, . . . }, with Ei being the total count for329

sample i. The partition segments the [0, 1] composition scale according to effort and allowing330

for zeros (Fig. 3f , Table 2) (Appendix S1). Small samples have wide bins and, thus, high331

variance and low weight (Fig. 5b).332

Fractional composition (FC) data arise in many ways, examples including the fraction of a333

photoplot (Page et al. 2008) or remotely sensed image (Cohen et al. 2003) occupied by each334

species or cover type. It can be the fraction of leaves lost to different types of herbivory (Silfer335

et al. 2015) or stream or foliar chemistry (Ollinger et al. 2002). The correlations between336

responses are distorted when estimated on the multivariate logit scale (Fig. 2b). Still more337

problematic, the logit scale does not admit zeros, which are common in composition data (Ad-338

kinson 1986, Leininger et al. 2013). In a recent example Leininger et al. (2013) admit zeros339

by defining a reference response variable that does not include zeros. We could not obtain340

convergence with this model for data sets containing large numbers of zeros, particularly those341

where many observations are dominated by a single species. In GJAM a FC observation is rep-342

resented in continuous space and censored at 0 (absent species) and 1 (monoculture)(Appendix343

S1).344

A sample may have multiple composition groups. For example, Y may include both soil345
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and endophytic microbiome data, each with its own total count (effort). Let G be the number346

of composition groups. If there are Lg response variables for a given FC or CC group g, then347

there are Lg − 1 non-redundant columns in Y for group g. A sample includes information348

on the total number of non-redundant columns, S =
∑

g Lg − G. A link function provides349

support over the real line for composition data, while providing estimates on the observation350

scale (Appendix S1).351

Categorical data (CAT) describe unordered categories. If observation i refers to a sample352

plot, and the response s is a cover-type variable, then it might be assigned to one of several353

categories k, such as ’tidal flat’, ’low marsh’, or ’high marsh’. If it refers to a sample plant, and a354

response is growth habit, it might be assigned one of four categories ’herb’, ’graminoid’, ’shrub’,355

or ’tree’. These are multinomial responses. Like composition data, a categorical response s356

occupies as many columns in Y as there are non-redundant levels Ks − 1, because the Ks357

columns sum to 1. The observed category is that having the largest value of wis,k for response358

s (Table 2). The model of Zhang et al. (2008) is a special case for the treatment of categorical359

responses in GJAM (Appendix S1).360

These data types can be modeled jointly in the R package gjam at https://cran.rstudio.361

com/web/packages/gjam/index.html362

Zero inflation363

A zero-inflated model is used to boost the zero category for the purpose of better describing364

responses or to allow both for an underlying process that admits zero (e.g., a population cannot365

persist at a site) and for observed zero when the underlying process is not zero (the population366

can persist, but is not detected). The simplest approach uses the effort-based partition in eqn367

4 to expand the k = 0 category,368

pi,0 =

(
−∞, 1

2Ei

]
(5)

Note that the second value is greater than zero, but it approaches zero with increasing effort–369

effort decreases the probability of missing the species. The second approach to zero inflation370

is to model the miss-classification of the discrete state (Appendix S1). In this case the label371

zis must be estimated together with wis and parameters (Fig. 3c).372
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Model fitting373

Model fitting entails simultaneous inference on parameters (B,Σ), together with latent states374

in W,Z, and any that are unknown in the partition P , depending on each observation type375

in the sample (Table 2). Posterior simulation is done with Gibbs sampling in the R pack-376

age gjam (Appendix S1), written in R (R Development Core Team 2013) and C++ (Clark377

2016). Prior distributions are discussed in the Appendix S1. Latent variables are sampled378

subject to the partition (eqns 2, 4). Regression coefficients are sampled from the matrix nor-379

mal distribution with a non-informative prior. The covariance matrix is sampled from the380

inverse Wishart distribution where regression coefficients are marginalized. Where the scale381

is unknown (presence-absence, ordinal, nominal) parameter expansion is used to sample on382

the correlation scale. For ordinal data the partition is sampled (Lawrence et al. 2008). Zero383

inflation involves an additional step to sample the discrete label zis when yis = 0 (Appendix384

S1).385

Roles for prediction386

The covariance Σ plays a prominent role in predicting relationships between species. Matrix Σ387

is the covariance between species after removing relationships explained by the mean structure388

of the model, µi in eqn 2. On the one hand, it is important to demonstrate that Σ is identified389

in the model, as we do with examples that follow. It is equally important to recognize that a390

model that explains much of the variation in data has high signal-to-noise, |B′xi| �
√
diag(Σ).391

In other words, we seek to concentrate variation in µ = B′X. When this goal is achieved392

diagonal elements of Σ are small, and off-diagonals are indistinguishable from zero. Non-zero393

off-diagonals mean that species still have information to convey on the abundance of others,394

after accounting for µ. Given µ, marginal independence between species s and s′ means that395

Σs,s′ does not differ from zero. Potentially of greater interest, conditional independence means396

that Σ−1s,s′ does not differ from zero (Rajaratnam et al. 2015). Conditional independence means397

that there is no evidence for a direct relationship between two species. Alternatively, non-zero398

Σ−1s,s′ finds evidence for a relationship between species that does not come from their mutual399

relationships to other species or from µ. The applications of prediction that follow involve400

estimates of Σ and the role they play in i) missing data imputation, ii) variable selection, iii)401

sensitivity analysis, and iv) species clustering.402
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Characterizing communities403

The long tradition in ecology of defining communities is primarily based on correlation or404

distance matrices evaluated for empirical data (Gauch 1992, ter Braak and Prentice 1988).405

Joint models provide opportunity to examine community structure probabilistically on the basis406

of environmental responses, with full uncertainty. The Q× S matrix B contains relationships407

of each species to the environment–the ’signal’–but not to each another. A predictive approach408

can translate B′X to an S×S covariance among species. This translation requires a distribution409

for a vector of predictors x̃; the observed xi are fixed (xi is deterministic in the model), but we410

can assign a distribution to x̃ as a scenario, justifying the approach (Appendix S1). Consider411

a distribution of centered input variables having structure like that of observations,412

x̃ ∼MVN(0,V) (6)

where V is a covariance matrix for x̃. Marginalizing x̃ contributes the environmental component413

of variation in response ỹ,414

E = B′VB (7)

Eqn 7 has the dimensions of a species covariance matrix (Ys× Ys′), and it has a corresponding415

correlation matrix RE. It is not the correlation matrix reported by Pollock et al. (2014).416

When S > Q (all examples given here) E is not full rank and thus does not have an inverse.417

We can evaluate a Moore-Penrose pseudoinverse. Matrix E summarizes species similarities418

in terms of their response to an environment x̃. Similar species have similar columns in B.419

Those similarities and differences are amplified for predictors x̃ with large variance. Conversely,420

species differences in B do not matter for variables in X that do not vary. The covariance in421

predictors could come from observed data, i.e., the variance of X, in eqn 6. It could represent a422

subset of the data, e.g., that for a particular region. It could be a scenario for future conditions.423

Sensitivity analysis424

In univariate models each element of vector B is a sensitivity coefficient, the effect of one425

predictor in X on one response in y. Coefficients can be compared to evaluate the importance426

of Q− 1 inputs in x (omitting the intercept). In multivariate models coefficients in the Q× S427

matrix B do not quantify the overall importance of predictors. The S coefficients associated428

with each predictor cannot be added together or averaged. Inverse prediction integrates all429

S responses in yi, thus reducing sensitivity analysis from S × (Q − 1) coefficients to Q − 1430
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coefficients, i.e., one per predictor variable (Clark et al. 2011, 2013). For a model that is linear431

in X the predictive distribution from eqn 6 is x̃ ∼ MVN(m,V), where m is mean vector,432

V−1 = F + U−1 is the covariance, and U is the prior covariance matrix for x. The quantity433

F = BΣ−1B′ (8)

is the ’information’ contributed by the fitted coefficients. These predictions can be compared434

using prediction scores (Gneiting and Raftery 2007) against the true values of x (Clark et435

al. 2013; 2014). An accurate and not-overconfident prediction has a high prediction score.436

Brynjarsdottir and Gelfand (2015) suggest that the diagonal be used as a sensitivity coefficient,437

f = diag(F) (9)

In both cases the importance of each covariates in X is summarized by a single value fq,438

integrating all information in the model.439

Missing data and model selection440

Species abundance data sets can be large and heterogeneous, often having missing values. The441

predictive distributions for ỹ and x̃ allow imputation as part of Gibbs sampling (Appendix442

S1). Missing values become part of the posterior distribution.443

Prediction can also be used for model selection. Model selection can be based on parameter444

space (e.g., AIC, DIC) or predictive space (Gelfand and Ghosh 1998; Hooten and Hobbs 2015;445

Dawid and Musio 2015). Advantages of the latter include the fact that the interpretation of446

parameters changes with the model, but predictive space does not; it makes sense to criticize447

models in terms of their capacity to predict the data (in- and out-of-sample). We use DIC and448

the Gneiting and Raftery (2007) prediction score.449

Model summary450

In summary, for data all of one type, GJAM generalizes existing multivariate (MV) models,451

including the MV probit (Chib and Greenberg 1998), MV Tobit (Clark et al. 2014), MV ordinal452

(Lawrence et al. 2008), and MV nominal (Zhang et al. 2008) models. It extends to new data453

types (discrete counts, composition), accommodating their differences through a partition that454

links continuous and discrete states and effort. Each of these methods can be viewed as special455

cases of eqn 2 (Table 2). Each data type involves a coefficient matrix B and a covariance456

matrix Σ. Depending on a partition P , which incorporates effort E, parameters generate457
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continuous W and, when it is unknown, discrete Z. In the case of ordinal data the partition is458

also estimated. For presence-absence, ordinal, and categorical data Σ is a correlation matrix459

R.460

So one size fits all, but the framework can go further. The same model applies when461

the different data types are modeled together. In GJAM, the partition and selective use of462

parameter expansion allows modeling with eqn (2), where each column of Y can be a different463

data type. In the diagnostics and applications that follow we show how it applies to combined464

data.465

Diagnostics466

Simulated data467

To determine if GJAM recovers true parameter values and can predict data we conducted468

simulations. Simulation steps include 1) specify partition P for different data types, 2) generate469

random parameter values (B,Σ) and design X, 3) draw a sample W, and 4) partition W with470

P to obtain Z and Y (eqn 2). Posterior distributions were simulated to confirm parameter471

identifiability and data prediction.472

Figures 6, 7 illustrate joint modeling with a mixture of attributes that includes ordinal473

counts (e.g., host or plot condition, qualitative assessments), presence-absence (e.g., potential474

pathogens, predators, herbivores), continuous abundance (e.g., basal area, biomass, nutrient475

concentration), discrete abundance (e.g., number of seedlings), count composition (e.g., micro-476

biome data), and continuous without censoring. Coefficients for all data types are estimated477

jointly (Fig. 6a), including the correlation matrix (Fig. 6b). The partition matrix for ordinal478

data is recovered (Fig. 6c). The fitted model predicts all data types well, despite contrasting479

scales (Fig. 7). Predictions are least accurate where there are small numbers of observations,480

shown as histograms below predictions in Figure 7. Extensive simulation studies were used to481

determine that the model predicts disparate species groups and attributes, each informing the482

others in ways that can contribute to prediction.483

To determine the effect of collapsing abundance data into presence-absence, we compared484

estimates for simulated abundance data fitted in two ways, one as abundance and another as485

presence-absence. We found that excellent parameter recovery on the abundance scale (Fig.486

8, left) does not translate to the presence-absence analysis, particularly the correlation matrix487

(Fig. 8, right). Even presence-absence is predicted better by the abundance model than by the488

presence-absence model (Fig. 8, lower panels). Furthermore, presence-absence models cannot489
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admit any species that are present at all sites, i.e., the most abundant species. Thus, GJAM490

allows us to evaluate the consequences of discarding abundance information and shows that491

effects can be substantial.492

GLM comparisons493

We compared GJAM with current practice based on GLMs. Comparisons with simulated data494

have the advantage that ’true’ parameter values are available from simulation, but they should495

be further checked with real data, which, of course, do not have a ’correct’ model. We wanted496

to know if the Gaussian first-stage model was unrealistic and thus might perform poorly in497

comparison to standard link functions in GLMs.498

Figure 9b compares a standard GLM model (Poisson likelihood with log link) with GJAM499

for stem counts on FIA data (data used in the Section Forest inventory in eastern North500

America), using the same predictors in X. The GJAM root mean square prediction error501

(rmspe) is half that of the GLM. The modal predictions for GJAMs are consistently closer to502

the data than for the GLM. The downward bias in the Poisson model is pronounced at high503

values, because the log link emphasizes the lowest values. GJAM does not differentially weight504

observations by abundance alone and is much more accurate than the GLM at high values,505

which, again, might often be of most interest. Thus, the linear link and Gaussian assumptions506

in GJAM perform better, not worse, than the standard model. It has the further appeal507

that parameter estimates are on the same scale as the observations and thus have transparent508

interpretation.509

Differences are still more striking for the Bernoulli example in Figure 9a, where the rmspe510

for the GLM is 37-fold larger than GJAM. Both models involve the probit, and they have the511

same mean structure. The models differ in that GJAM jointly models host status (Fig. 1a)512

together with its endophytic microbiome (Fig. 1b), composition data. In other words, GJAM513

synthesizes multiple data types, while still offering superior prediction for each individually.514

In summary, although the Gaussian assumption of GJAM could be criticized as being515

unrealistic for real data, we show that it performs better than standard models widely used516

in ecology. To determine if performance is improved by the generalizing the Gaussian to517

asymmetric distributions we have implemented the skew-normal (Azzalini 2005), including for518

composition data, and find negligible benefit despite substantially greater complexity (Taylor-519

Rodriquez et al., in prep).520
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Applications521

Forest inventory in eastern North America522

Just as the environment controls distributions of species (Cowles 1911, Sinclair et al. 2010),523

the biodiversity of a site might hold clues to the environment. The promise that vegetation524

might reveal underlying environmental conditions has motivated its use for water and mineral525

prospecting (Brooks 1979), disease risk (Robinson et al. 1997), climate reconstruction (Brewer526

et al. 2012), and conservation (Larson et al. 2004, Nichols and Williams 2006). But individual527

species or aggregate vegetation characteristics (e.g., remote sensing) tend to be limited in their528

indicator value (Ellenberg 1982, Dufrene, and Legendre. 1997, Cannon 1971, Brooks 1979,529

Gmez-Girldez et al. 2014). For example, most soil types and terrain offer only slight advantages530

for some species over others, and most species still occupy a broad range of sites (Whittaker531

1978). GJAM provides a first opportunity to predict site conditions probabilistically, without532

need for indicator species, through inverse prediction from the full (joint) model.533

This example uses USDA Forest Inventory and Analysis (FIA) data to combine species-level534

data with plot-level data. We demonstrate application with variables at these different scales,535

including inverse predictive of the environment. Responses are plot-level foliar N and P, both536

continuous responses as community-weighted mean values (Clark 2016), together with biomass537

of tree 98 species that occurred on at least 50 plots, all continuous abundance with point mass538

at zero; there are a total of S = 2 + 98 = 100 responses. FIA data come from 0.0672-ha plots539

established at a density of 1 per 2428 ha (Bechtold and Patterson 2005, Woudenberg et al. 2010,540

USDA 2012). All trees > 12.7 cm in diameter are counted and measured. Individual plots541

are so small that each species is represented by, at most, a few individuals, and many species542

present in an area will be absent simply due to small plot size. For this reason analyses are often543

based on aggregate plots (Iverson and Prasad 1998, Zhu et al. 2014, Clark et al. 2014). For544

this illustration we aggregate 19,568 FIA plots into 1617 one-ha plots, a k−means clustering545

using covariates (Schliep et al. 2015). In other words, plots are similar in covariate space.546

Most observations (72%) are zero. Predictors in the model include temperature, moisture,547

local terrain (slope, aspect), and soil type. Slope and aspect are represented by a length−3548

vector specified in the caption of Figure 11. Predictors have low correlation with one another549

and low variance inflation factors (Appendix S1). Computation makes use of the dimension550

reduction algorithm of Taylor-Rodriquez et al. (2016), although a data set of this size does not551

require it (Clark et al. 2014).552

We first determined that the model predicted the responses (Fig. 10), including the overall553
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plot richness, which was not actually fitted with the model (Fig. 10c). We include this because554

SDMs over-predict richness (Guisan and Rahbek 2011, Clark et al. 2014). Accurate but555

wide predictive intervals for the continuous foliar traits reflect the that fact that these are556

plot-level variables, contributed by species with a broad range of foliar N and P values (Fig.557

10a). Continuous abundance predictions for tree biomass are broad for non-zero observations,558

because most are rare (histogram at the base of Figure 10b). Likewise, the species richness559

predictions are poor for the most- and least-diverse sites, because these sites are rare (Fig.560

10c), but are otherwise accurate.561

Soil types and slope emerge as the most important predictors in the model (Fig. 11).562

They account for the largest effects on individual species (Figure 11, right). The predictive563

distributions for overall sensitivity F̂ (eqn 8) are highest for two soil types, the ultisols that564

dominate the eastern Piedmont and the mollisols most prevalent in the Upper Midwest (Fig.565

11, left). Despite the strong effect of slope (u1), aspect effects (u2, u3) are weak for all species566

(Fig. 11, right).567

Despite the fact that individual predictors show that slope effects are large for few species,568

and aspect effects are weak for all species (Fig. 11), the full model allows precise inverse569

prediction of the local environment. Taking aspect as an example, effects are evident in only a570

small subset of species, with mesic species biased toward the NE (Fig. 12). Even for the most571

responsive species, effects are subtle, less than 5 m2 ha−1 basal area on 20◦ slopes. Despite572

weak site effects for species individually inverse prediction provides precise predictive capacity573

not only for regional temperature (Fig. 13a), but also for local habitat, including moisture,574

slope, and aspect (Fig. 13b, c, d). By exploiting information for all species together inverse575

prediction identifies habitats where no individual species could. These results indicate that576

the species modeled jointly can be used to predict local site conditions, despite the fact that577

individual species cannot.578

The model further indicates that structure in abundance data does not provide an accurate579

representation of environmental responses in the model. Standard methods for identifying580

structure on ecological communities build from co-occurrence or abundance data. Figure 14a581

shows the species × species correlation matrix, a starting point or close relative of similarity582

matrices used for many clustering and ordination methods (e.g., Oksanen 2008). The order583

of species in Figure 14a follows a cluster analysis to highlight similarities among species. A584

complete-linkage algorithm was used in the R package stats::hclust (R Core Team). This and585

other clustering algorithms we applied found only weak pattern in the data. With the exception586
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of few ’red’ combinations in Figure 14a, correlations are almost entirely in the range from −0.2587

to 0.2. The response matrix Ê in Figure 14b from eqn 7 is assembled in the same order as588

Figure 14a. If the variation in field data was explained by the model, then patterns in the two589

should be similar. They are not; the dense mixture of high positive (red) and negative (blue)590

values in Figure 14b means that the structure in field data is quite different from the structure591

of responses.592

However, when we reorganize Ê according to its own structure there are clear species593

assemblages (Fig. 14c). The strong contrasts in colors, clearly organized in species groups,594

shows that structure in the response is dramatic and not well-captured by the tendency to595

co-occur.596

Synthesis of microbiome data597

Synthesis of data collected and analyzed by different methods and for different purposes is a598

goal of microbiome research (Gilbert et al. 2014). Synthesis is challenging, due to the size of599

sequence data (Lauber et al. 2009), over-representation of zeros, variable effort of composition600

data, and the fact that few studies collect ancillary data needed for model fitting and prediction.601

The large number of operational taxonic units (OTUs) generated by sequence methods poses602

a ’big-S, small-n’ problem; S can be orders of magnitude larger than n. Dimension reduction603

schemes seek to zero out elements of B, Σ, or Σ−1 or to reduce the rank of B′X or Σ (e.g., Pati604

et al. 2014; Rajaratnam et al. 2015; Goh et al, 2015). Thus far, microbiome data have been605

evaluated primarily with descriptive techniques, to identify groups of taxa that could be related606

in where they occur and how they respond to the environment. The inconsistency in covariates607

means that a given predictor variable is likely to be absent for many samples. Finally, the608

sampling effort varies over orders of magnitude, the number of reads per sample (Fig. 1b).609

This variation has led to the practice of rarifying samples down to some common sum, thus610

discarding the bulk of the information (McMurdle and Holmes 2014). We focus on dimension611

reduction for the GJAM in a separate study (Taylor-Rodriquez et al, in revision) focusing here612

on the more fundamental question of potential for model-based analysis of microbiome data.613

Data for this example come from the Earth Microbiome Project (EMP) global soils database,614

a project initiated to standardize molecular phylogenetic approaches across datasets to facil-615

itate comparisons within and between studies (Gilbert et al. 2014). This composite data set616

provides no common predictors other than latitude and a habitat variable. The second most617

frequent variable is pH, which is available for only 245 (50% of) studies. These challenges618
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are common for data compilations. The example provides opportunity to examine if effective619

inference for such combined data sets can be done despite the high degree of data imputation,620

for median-zero data, and few covariates.621

To illustrate GJAM application to composition data we extracted all OTUs that occur in at622

least 350 samples. Typical of molecular phylogenetic data, observations are dominated by soil623

bacteria, primarily Acidobacteria and Proteobacteria. Estimates integrate the heterogeneous624

effort represented by samples that range over four orders of magnitude in total reads (Fig.625

15). GJAM imputes missing values, but we anticipate that massive missingness will degrade626

the fit. The effect of effort comes through the weight contributed by samples, those with least627

effort having the highest variance (Fig. 5b) and thus the weakest contribution. Predicted628

abundance is imprecise (not shown), reflecting tremendous scatter in the data, primarily zeros,629

few predictors to include in the model (pH, latitude), and massive imputation of input variables630

(50% for pH, and two latitude values). Still, sensitivity estimates show clear differences between631

inputs, including a stronger effect of latitude than pH. They further indicate some capacity to632

inverse-predict pH and local habitat, but not latitude, from the fitted model (Fig. 16). Clear633

structure in the E matrix is indicated by red blocks at left in Figure 17. On the standardized634

scale pH and latitude have little impact in comparison (right side of Figure 17).635

The fact that half of all pH data had to be estimated (blue dots in Fig. 16b) together with636

coefficients suggests that improvement will come simply from greater availability of predictor637

variables. Even with these limitations, GJAM shows that microbiome data can be used to638

predict habitat (Fig. 16c), if not the reverse. These estimates highlight the importance of some639

standard set of predictors deemed important for the microbiome that would be encouraged from640

all investigators. We are now engaged in an extensive analysis of individual data sets where641

there are many inputs.642

Discussion643

The GJAM framework accommodates the median-zero, multivariate, multifarious nature of644

attribute data with an explicit connection between discrete and continuous observations on all645

species simultaneously (Fig. 3). The framework extends joint species distribution modeling646

to generalized joint attribute modeling (GJAM). Avoiding the transformation and rescaling647

that is needed with alternative methods facilitates interpretation of correlation structure on648

the observation scales. Advantages resolve some important challenges for species distribution649

models (SDMs) and joint species distribution models (JSDMs), including those that consider650
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abundance (Latimer et al. 2009; Thorson et al. 2015).651

A first advantage is accurate prediction. Recent studies note the challenges of prediction652

from species distribution models (Baselga and Araujo 2010, Guisan and Rahbek 2011, Clark et653

al. 2014). The accurate predictions for multifarious data with GJAM relies on proper treatment654

of continuous and discrete data, including overwhelming zeros. We verify parameter recovery655

and predictive performance in simulation (Fig. 6, 7, 8). We demonstrate some advantages656

over standard methods for probabilistic prediction (Fig. 9). Although GJAM avoids the657

scale distortion that comes with a non-linear link function it predicts data better, not worst,658

than standard GLMs (Fig. 9). Unlike algorithmic-based methods, such as regression trees, it659

provides sensitivities to all inputs and species covariance, with full uncertainty.660

The capacity to infer and interpret relationships between species on the observation scale661

avoids the distorted correlations that result from fitting hierarchical models with link functions662

(Fig. 2). For data that lack an absolute scale, presence-absence, nominal, and ordinal, the663

imposed unit-variance scale still permits parameter recovery and accurate prediction, including664

their relationships with other species that do have an observation scale (Fig. 6, 7). These665

relationships range from a simple tendency to co-occur (presence-absence data), to possess666

attributes that co-occur (categorical data), to co-occur within similar ordinal categories, and667

to co-occur at similar absolute abundances (other data types).668

Inverse prediction (IP) is especially valuable in the joint setting, not only for missing data669

imputation, but also for extracting the role of input variables (Fig. 13, 16). IP provides detailed670

insight on the environment by combining the information in all species and the model. Although671

microbiome diversity is not well predicted by the environment, results show promise that the672

environment can be inversely predicted from the microbiome (Fig. 16c). Although ’indicator673

species’ are rarely available for important environmental variables, the full community can674

provide precise insight (Fig. 13). For sensitivity analysis IP reduces the contributions from675

103 parameter values in B and Σ to Q− 1 sensitivity coefficients (Fig. 11).676

The question of how many species to model requires a few technical remarks. We do677

not report here on dimension reduction methods for the GJAM, but it accommodates them678

(Taylor-Rodriquez et al., in revision). Most ecological data sets do not involve thousands or679

even dozens of species. For those that do include many species, a hard limit on the total number680

of species that can be modeled depends on n, just as a hard limit on the number of predictors681

in B (in absence of dimension reduction) cannot exceed n. The covariance matrix Σ must be682

full rank to allow inversion and model fitting. A prior distribution can rescue an otherwise683
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non-invertible Σ, but then the prior dominates. By marginalizing regression coefficients in our684

sampling of Σ (Appendix S1) we avoid high sensitivity to a prior at the cost of requiring that685

Σ is full rank. Long before a hard limit on number of species is reached we expect a degraded686

fit. Our applications show GJAM working well for 102 species. Given that microbiome data are687

dominated by zeros (Fig. 15), many applications may still work with subsets or aggregations688

of sequence data. As mentioned above, productive developments can focus on rank reduction,689

in which case many more species can be included (Taylor-Rodriquez et al., 2016).690

In conclusion, GJAM provides new flexibility for inference and prediction from ecological691

data. GJAM aligns the scales for observations of many types and fits the model on observation692

scales.693
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Tables982

Table 1: Effort for discrete counts

yis = zis Ei wis k pik
1

per plot2 plot area per area interval partition

10 0.1 ha 100 ha−1 10 (95, 105]

100 1.0 ha 100 ha−1 100 (99.5, 100.5]

per OTU3 total reads fraction interval partition

10 100 0.1 10 (0.095, 0.105]

10,000 100,000 0.1 10,000 (0.099995, 0.100005]

1 From eqn 4

2 e.g., plants counted on sample plots

3 e.g., OTUs read in microbiome data
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Table 2: Effort effect on partition for plot data

Censored

Data type Partition P intervals C

Presence-absence PA p = (−∞, 0,∞) {0, 1}

Continuous abundance CA p = (−∞, 0,∞) {0}

Discrete abundance DA pi = (−∞, 1
2Ei
, 3
2Ei
, . . . , maxs(yis)−1/2

Ei
,∞) {0, 1, . . . ,maxs(yis)}

Ordinal counts OC ps = (−∞, 0, ps,2, ps,3, . . . ,∞) 1 {0, 1, . . . , K}

Categorical CAT pis = (−∞,maxk′(wis,k′),∞) 2 {0, 1}

Count composition CC pi = (−∞, 1
2Ei
, 3
2Ei
, . . . , 1− 1

2Ei
,∞) {0, 1, . . . , Ei}

Fractional composition FC pi = (−∞, 0, 1,∞) {0, 2}
1 maxi(wis|zis = k) < ps,k < mini(wis|zis = k + 1)

2 k′ ∈ {k|yis,k = 0}, i.e., the maximum wis,k for the unobserved levels k
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Figure legends983

Figure 1. Zero dominance in three data types. a) Seedling hosts (n = 762) can be in ’morbid’984

or ’healthy’ states, scored as 0 and 1. b) Composition count data for their endophytic985

microbiome (S = 175 OTUs occurred in at least 100 observations) are 96% zeros. c)986

Continuous abundance with point mass at zero–the biomass taken over S = 98 species on987

n = 1617 1-ha aggregate plots is 82% zeros. (a and b from Hersh, Benetiz, Vilgalys, and988

Clark, in prep.)989

Figure 2. A comparison of correlation values on the observation scale Y vs a latent variable W990

at the first stage of a hierarchical model with (a) log link, Y = eW , and (b) multivariate logit991

link, as used for composition data, Ys = exp(Ws)/(1 +
∑S−1

s=1 exp(Ws). The reference species992

S has link YS = 1/(1+
∑S−1

s=1 exp(Ws). There are S = 30 species having multivariate normal993

distribution on the w scale, i.e., the scale where the covariance is modeled. Agreement with994

the observation scale would have points on the diagonal.995

Figure 3. GJAM includes continuous W and discrete label Z for each observed Y . When the996

observation Y (vertical axis) is continuous it is equal to W . When the observation Y is997

discrete it is assigned to a discrete interval with label Z. The partition {pk}K−1k=0 (labels on998

horizontal axis) defines each interval Z in terms of W . Miss-classification occurs when Z999

is wrong (e.g., zero inflation in c). The portion of the composition link (f) beyond point a1000

is exaggerated in the figure for clarity and discussed in the Appendix S1. Partition points1001

must be inferred when the scale is unknown, in which case they have a density. For ordinal1002

data, p0 = −∞ and p1 = 0. Additional partition points are estimated, each with a marginal1003

posterior distribution in g.1004

Figure 4. Censoring in gjam. As a data-generating model (a), a realization W that lies within1005

a censored interval is translated by the partition p to discrete Y . The distribution of data1006

(bars at left) is induced by the latent scale and the partition, shown as horizontal bars.1007

For inference (b), observed discrete Y takes values on the latent scale from a truncated1008

distribution.1009

Figure 5. Mean-variance relationships. a) Interval censoring controls variance, which increases1010

with partition width (shown as vertical dashed lines at 0, 1, 2, 4, 8, 16). Intervals are shown1011

for the predictive mean values of Ŷ b) For composition-count (microbiome) data partition1012

width declines with total counts for the sample, thus decreasing variance with increasing1013

effort.1014

Figure 6. Joint modeling of simulated data for Q − 1 = 4 predictors, n = 2000 observations,1015
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and S = 17 species. Data types include continuous with no zero censoring (CON), presence-1016

absence (PA), continuous abundance (CA), discrete abundance (DA), count composition1017

(CC), and ordinal counts (OC). Coefficient estimates in (a) and correlation estimates in1018

(b) include all combinations of data types. For ordinal categories partitions are accurately1019

predicted in (c). Vertical whiskers are 95% credible intervals.1020

Figure 7. Joint data prediction for the example in Figure 6. Frequency of observations in Y is1021

shown at the base of graphs. Box and whisker plots are 68% and 95% predictive intervals.1022

Figure 8. Parameter estimates (B,R) and data prediction (Y) for abundance data fitted as1023

abundance (left) and as presence/absence (right). For this simulated example n = 200,1024

S = 10, Q = 5. Each panel includes means and 95% intervals. Both analyses were done1025

with the GJAM based on the same simulated abundance data. For the presence-absence1026

example, matrix B is translated to the correlation scale (Appendix S1).1027

Figure 9. GLM and GJAM predictions for (a) host status from Figure 1a and for (b) stem1028

counts, for the same plots represented by biomass data in Figure 1c. GLMs use a Bernoulli1029

likelihood with a probit link and a Poisson likelihood with log link, respectively. In (a)1030

predictor variables are temperature, host species, and polyculture treatment, the last two1031

variables being factors. In (b) the predictors are stand age, temperature, moisture, climatic1032

deficit, topography, and soils, the last being a factor. The 1:1 line of agreement and root1033

mean square prediction error (rmspe) are shown for each example. Data in (a) from Hersh,1034

Benetiz, Vilgalys, and Clark, in preparation.1035

Figure 10. Predicted continuous foliar traits (a), biomass (b), and species richness (c) for the1036

FIA example. The distribution of data is shown as histograms. Boxes and whiskers are 68%1037

and 95% predictive intervals.1038

Figure 11. Sensitivity F̂ from eqn (8) (left) and coefficient matrix B̂ (right) for the FIA1039

example. The diagonal of F̂ is the sensitivity vector f̂ (eqn 9), showing large values for1040

slope (u1) and two soil types, resulting from strong effects of these variables in the B matrix1041

at right. Predictor variables described in the Appendix S1 include temperature, moisture,1042

four soil types (a multilevel factor), and topography, the latter including u1 = sin(slope),1043

u2 = sin(slope) sin(aspect), and u3 = sin(slope) cos(aspect) (Clark 1990). The heat color1044

scale is strong negative (blue) to zero (white) to red (strong positive).1045

Figure 12. Effect of aspect on basal area for species showing the greatest responses, given as1046

the sum βu1,su1 + βu2,su2 + βu3,su3. Envelopes bound responses for slopes of 10− 20◦. The1047

vertical scale is in units of basal area (m2 ha−1).1048
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Figure 13. Inverse prediction of a) temperature, b) moisture, c) slope, and c) aspect. In d1049

symbol size is proportional to slope (zero slope has no aspect). Boxes and whiskers are 68%1050

and 95% predictive intervals. The distribution of data is shown as historgrams.1051

Figure 14. Correlation structure in data (a) and in response to the environment (b). The1052

structure in (a) comes from the ordering of species by cluster analysis of the abundance1053

data. Predictive distributions for the matrix Ê in (b) are ordered as in (a), but show no1054

such structure. When clustered instead by Ê clear structure emerges (c).1055

Figure 15. Reads per OTU massively overrepresents zeros, but can range as high as 106.1056

Figure 16. Inverse prediction of X from soil microbiome data show poor prediction for sample1057

latitude (a) and pH (b), but good prediction of many habitats (c), a multilevel factor in1058

the model. The ’reference’ category refers to habitats that were rare in the data. Missing1059

covariate values are shown as blue dots at right of (a) and (b). the relative number of1060

samples in each habitat category are shown with shading at the base of (c).1061

Figure 17. Response matrix Ê showing groups of OTUs similar in their responses to envi-1062

ronmental variables, explained primarily by the factor habitat in the coefficient matrix B1063

(names in green at right).1064

38



Figures1065

Figure 1: Zero dominance in three data types. a) Seedling hosts (n = 762) can be in ’morbid’ or ’healthy’ states,

scored as 0 and 1. b) Composition count data for their endophytic microbiome (S = 175 OTUs occurred in

at least 100 observations) are 96% zeros. c) Continuous abundance with point mass at zero–the biomass taken

over S = 98 species on n = 1617 1-ha aggregate plots is 82% zeros. (a and b from Hersh, Benetiz, Vilgalys,

and Clark, in prep.)
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Figure 2: A comparison of correlation values on the observation scale Y vs a latent variable W at the first

stage of a hierarchical model with (a) log link, Y = eW , and (b) multivariate logit link, as used for composition

data, Ys = exp(Ws)/(1 +
∑S−1

s=1 exp(Ws). The reference species S has link YS = 1/(1 +
∑S−1

s=1 exp(Ws). There

are S = 30 species having multivariate normal distribution on the w scale, i.e., the scale where the covariance

is modeled. Agreement with the observation scale would have points on the diagonal.
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Figure 3: GJAM includes continuous W and discrete label Z for each observed Y . When the observation Y

(vertical axis) is continuous it is equal to W . When the observation Y is discrete it is assigned to a discrete

interval with label Z. The partition {pk}K−1k=0 (labels on horizontal axis) defines each interval Z in terms of

W . Miss-classification occurs when Z is wrong (e.g., zero inflation in c). The portion of the composition link

(f) beyond point a is exaggerated in the figure for clarity and discussed in the Appendix S1. Partition points

must be inferred when the scale is unknown, in which case they have a density. For ordinal data, p0 = −∞

and p1 = 0. Additional partition points are estimated, each with a marginal posterior distribution in g.
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Figure 4: Censoring in gjam. As a data-generating model (a), a realization W that lies within a censored

interval is translated by the partition p to discrete Y . The distribution of data (bars at left) is induced by the

latent scale and the partition, shown as horizontal bars. For inference (b), observed discrete Y takes values on

the latent scale from a truncated distribution.
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Figure 5: Mean-variance relationships. a) Interval censoring controls variance, which increases with partition

width (shown as vertical dashed lines at 0, 1, 2, 4, 8, 16). Intervals are shown for the predictive mean values of

Ŷ b) For composition-count (microbiome) data partition width declines with total counts for the sample, thus

decreasing variance with increasing effort.
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Figure 6: Joint modeling of simulated data for Q−1 = 4 predictors, n = 2000 observations, and S = 17 species.

Data types include continuous with no zero censoring (CON), presence-absence (PA), continuous abundance

(CA), discrete abundance (DA), count composition (CC), and ordinal counts (OC). Coefficient estimates in (a)

and correlation estimates in (b) include all combinations of data types. For ordinal categories partitions are

accurately predicted in (c). Vertical whiskers are 95% credible intervals.
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base of graphs. Box and whisker plots are 68% and 95% predictive intervals.
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Figure 8: Parameter estimates (B,R) and data prediction (Y) for abundance data fitted as abundance (left)

and as presence/absence (right). For this simulated example n = 200, S = 10, Q = 5. Each panel includes

means and 95% intervals. Both analyses were done with the GJAM based on the same simulated abundance

data. For the presence-absence example, matrix B is translated to the correlation scale (Appendix S1).
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Figure 9: GLM and GJAM predictions for (a) host status from Figure 1a and for (b) stem counts, for the same

plots represented by biomass data in Figure 1c. GLMs use a Bernoulli likelihood with a probit link and a Poisson

likelihood with log link, respectively. In (a) predictor variables are temperature, host species, and polyculture

treatment, the last two variables being factors. GJAM models the combined host status and microbiome as

responses. In (b) the predictors are stand age, temperature, moisture, climatic deficit, topography, and soils,

the last being a factor. The 1:1 line of agreement and root mean square prediction error (rmspe) are shown for

each example. Data in (a) from Hersh, Benetiz, Vilgalys, and Clark, in preparation.
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Figure 10: Predicted continuous foliar traits (both N and P) (a), biomass (b), and species richness (c) for the

FIA example. The distribution of data is shown as histograms. Boxes and whiskers are 68% and 95% predictive

intervals.
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Figure 11: Sensitivity F̂ from eqn (8) (left) and coefficient matrix B̂ (right) for the FIA example. The diagonal

of F̂ is the sensitivity vector f̂ (eqn 9), showing large values for slope (u1) and two soil types, resulting from

strong effects of these variables in the B matrix at right. Predictor variables described in the Appendix

S1 include temperature, moisture, four soil types (a multilevel factor), and topography, the latter including

u1 = sin(slope), u2 = sin(slope) sin(aspect), and u3 = sin(slope) cos(aspect) (Clark 1990). The heat color scale

is strong negative (blue) to zero (white) to red (strong positive).
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Figure 14: Correlation structure in data (a) and in response to the environment (b). The structure in (a)

comes from the ordering of species by cluster analysis of the abundance data. Predictive distributions for the

matrix Ê in (b) are ordered as in (a), but show no such structure. When clustered instead by Ê clear structure

emerges (c).
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Figure 15: Reads per OTU massively overrepresents zeros, but can range as high as 106.
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Figure 16: Inverse prediction of X from soil microbiome data show poor prediction for sample latitude (a) and

pH (b), but good prediction of many habitats (c), a multilevel factor in the model. The ’reference’ category

refers to habitats that were rare in the data. Missing covariate values are shown as blue dots at right of (a)

and (b). the relative number of samples in each habitat category are shown with shading at the base of (c).
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Figure 17: Response matrix Ê showing groups of OTUs similar in their responses to environmental variables,

explained primarily by the factor habitat in the coefficient matrix B (names in green at right).
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